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Abstract 
A Color Matching Method (CMM), also called a Color 

Engine, is a software component that does the color conversion 
calculations from one device's color space to another.  This paper 
discuses a new working mode for CMMs that allows such software 
components to operate in a way that is not restricted by the gamut 
of the device encoding, the gamut of the profile connection space 
or any intermediate step. This allows ICC profiles to be used in 
new ways for a variety of applications. An open source CMM 
implementing this mode is also introduced. 

 

Background 
One of the main components of a color management system is 

the Color Matching Method, (CMM), which is the software engine 
in charge of controlling the color transformations that take place 
inside the system. By today, the vast majority of color management 
systems do use International Color Consortium (ICC) profiles.   

 
ICC color management is based on device characterization 

profiles. Color transformations can be obtained by linking those 
profiles. This can be done because ICC has defined a standard 
profile connection space, the ICC PCS, which can either be XYZ 
or CIE L*a*b*. Each ICC profile describes how to do the 
conversion between the device color space and the profile 
connection space. In the ICC paradigm, all the smarts of the color 
conversion are embedded into profiles, and the CMM just 
concatenates them with some minor adjustments. This is known as 
the “smart profiles, dumb CMM” approach.  

 
 
 
 
 

Figure 1. ICC color transforms as profile concatenation 

To implement the conversion device/PCS, ICC profiles can 
internally use three different math primitives: matrices, curves and 
multidimensional interpolation tables. Only certain combinations 
of those primitives are allowed, depending on the profile version 
and the direction being used.  

Up to the ICC specification 4.2, profiles had a limit on the 
precision they could deliver. The internal encoding of profiles did 
force them to have a precision of 8 or 16 bits at most. That limit on 
precision was a stopper in the adoption of ICC profiles by some 
applications, like RAW photo processing or digital cinema, where 
greater levels of accuracy are required. See figure 2 for a DPX real 
world example, where input values 0-40 map to same output value 
2, and 16-bit integer encoding cause severe quantization in 
shadows.  

 
To overcome this limitation, in November 2006 the ICC 

approved the Floating Point Encoding Range addendum to the 
profile specification. With the introduction of floating-point data in 

the spec, ICC profiles are no longer limited to 8 or 16 bit, but to 
the broad range of 32-bit IEEE 754 floating point. That was a huge 
improvement when regarding precision and dynamic range, which 
is now only limited by floating point representation and can take as 
much as 1039 

 
Figure 2. KODAK VISION2 500T Color Negative Film 5218 / 7218 

This addendum, however, introduced another improvement 
perhaps not so evident but equally important. Floating point 
encoding has a huge domain, which is nearly infinite, much larger 
than any real gamut. Based on that, one could think that a capable 
CMM using such kind of profiles could operate in an “unbounded 
mode” that would not have the limits that traditional CMMs have.  

 
Further investigation has demonstrated that it is certainly 

possible to write such CMM. And moreover, some old, very 
popular, ICC profiles can be successfully used in this unbounded 
mode as well, without any modification at all. Compatibility with 
existing profiles is a key feature to properly leverage a new feature. 
Many of the yet-existing images are encoded in popular color 
spaces like sRGB or AdobeRGB, and have those profiles 
embedded. A CMM capable to work in unbounded mode with such 
images and with such profiles would certainly be easier to adopt 
that any system requiring new profiles and new encodings for 
every single image. 

 

Bounds in ICC color management 
In ICC specifications previous to the Floating Point Encoding 

Range addendum, device encoding range must have definite 
bounds. According that, most, if not all, of today’s CMM perform 
some sort of clipping. To enumerate a few samples: Adobe ACE, 
Apple ColorSync and Windows ICM.   

 
Clipping happens because several reasons. One is the 

encoding of the device space. If we use a 8 or 16 bit representation 
of the color space, all encodeable values are inside device gamut 
by definition, and there is no way to represent out of gamut values. 
For example, in the traditional 8-bit encoding, device values goes 
from 0 to 255. This is encoded in one byte taking all available bits, 
and therefore there is no way to represent negative numbers or 
values over 255. 16 bit gives more precision but still clips values to 
be inside realizable gamut. 



 

 
Figure 3. RGB device encoding bounding 

 
 
More subtle clipping can happen inside the CMM without any 

evident trace to the end user, as another source of clipping in ICC 
color management is the encoding of profile connection space 
itself. Version 2 Lab PCS is based on an ideal reflection print that 
has white point mapped on perfect diffuser and black point mapped 
on perfect absorber. Real device range is then scaled to this 
hypothetical media which has infinite dynamic range. As a result, 
real device black point is mapped to Lab (0, 0, 0), and real device 
white point is mapped to Lab (100, 0, 0). The mapping of the 
measured colorimetry of the device white to (100, 0, 0) is 
accomplished using linear XYZ scaling. The media white point tag 
is then used to undo the scaling of the device white to produce 
"ICC-absolute" colorimetry values which are relative to the 
assumed adapted white.  

 
The reason to do this normalization is to maximize profile 

connectivity in perceptual and saturation rendering intents. In 
normal ICC operation mode, the device encoding bounding do not 
limit the dynamic range that can be supported because there are no 
restrictions on the relation between the device encoding minimum 
and black, or between the device encoding maximum and the 
assumed adapted white. But as a side effect of that mapping, 
values below black point are not encodeable; they result in 
negative L* or XYZ and most CMM clips them to zero. Highlights 
over white point may suffer same clipping, since the perceptual 
PCS does map device white point to Lab (100, 0, 0).  Since this 
happens in the profile connection space, the end user does not see 
this effect directly but as an indirect result 

 
XYZ PCS has an encodeable range of [0...1.99997] which 

encompasses most of today gamuts, It is unlikely that any device 
values will have corresponding D50 chromatically adapted XYZ 
values above 1.99997. However, it is possible for this to occur in 
some unusual circumstances, for example in situations of extreme 
fluorescence where the media white is much darker than some 
saturated colors. The media white is defined to be the lightest 
neutral color that a capture device can capture, or an output device 
can produce. It is also possible that some device values may have 
corresponding XYZ values that are negative. Such values can 
result from digital camera color analysis matrices, or chromatic 
adaptation transforms applied to extremely saturated blue colors. 
In most cases, it is acceptable to clip negative XYZ values to zero 
as such values do not correspond to real colors. However in some 
cases this may be unacceptable, for example if perfect round 
tripping is desired 
 

Lab PCS is more limited. A device value of (0, 255, 0) in 
AdobeRGB, for example, results in Lab (83.2, -128.1, 86.1) which 
is not encodeable in Lab PCS. Lab PCS has a*/b* axis restricted to 
128       127  in version 4 of the ICC spec. Version 2 of 

ICC spec have slightly different limits:  128     127.996) 
but again that’s not enough to hold entire AdobeRGB gamut. 

 

Bounding CMM example 
Let’s take an example to demonstrate the PCS clipping effect 

by using Adobe Photoshop CS4. If we setup Photoshop to use 
sRGB as working space, and convert by means of relative 
colorimetric intent a Lab value of: 

 
Lab = (0, -120, 0) 

 
We will obtain sRGB = (0, 0, 0). That seems to be perfectly 

reasonable as L*=0 maps to black. Now we can try a symmetrical 
value, but on b* axis 
 

Lab = (0, 0, -120) 
 
In this case we obtain sRGB = (0, 27, 182), which is 

somehow surprising given the (0, 0, 0) result obtained with the 
previous value. Why Photoshop does clip one axis (a*) and does 
not clip the other (b*) in the same fashion? 
 
  The reason of such values is clipping performed on the PCS. 
If we take first Lab value, and convert it to XYZ, we obtain; 
 

XYZ = (-2.9, 0, 0) 
 

Which has a negative value on X colorant. Since the CMM 
performs PCS clipping, the XYZ value becomes (0, 0, 0) which is 
readily translated to sRGB = (0, 0, 0). On the other hand, Lab = (0, 
0, -120) converted to XYZ results in (0, 0, 33.1), which does not 
suffer from PCS clipping, and therefore is translated to (0, 27,182) 
by the sRGB equations: 
 

 
  

 
 

Figure 4. XYZ to sRGB conversion 

If we inspect sRGB equations, there is no place where hard 
clipping is needed, and the math could perfectly deal with negative 
XYZ numbers, despite those may have no physical meaning at all. 
Computing the conversion without any clipping does result in 
following values: 
 

(0, 0, -120)  (-536.1, 27.2, 181.7) 
(0, -120, 0)  (-307.0, 47.6 -7.0) 

 
Those are clearly out of sRGB gamut. At that point we may 

choose to perform the clipping as usual or to keep negative 
numbers and let the calling application to take the pertinent action 
on depending on the use application has for the resulting colors. 
That latter would be an example of a CMM working in unbounded 
mode. 

 



 

Unbounded mode 
Most CMM does allow using a variety of formats for both 

input and outputting raster data. Some CMM allow using floating 
point as an additional format. Since floating point allows a wide 
range of values, the bounding introduced by the device encoding 
format no longer applies. CMM often clips those floating point 
values to be in [0...1.0] range because convention. But at that point 
one could argue that this bounding is not strictly needed. Some 
profiles are built by using elements that does not impose any 
bounds at all. If a color transform is setup by using exclusively this 
kind of profiles, and floating point is used as input and output 
format, there are no constrains and the color transform is not 
limited by any bounds.  We would name this special mode as 
unbounded CMM. 

 
Some colorimetric space conversions are also likely to work 

unbounded. Conversion from Lab to XYZ and vice-versa can run 
unbounded, despite that would yield colors that are not physically 
realizable. ICC currently only supports XYZ and Lab as profile 
connection spaces. 

 

 
 

Figure 5. XYZ to CIE L*a*b* conversion 

At that point we should note that ICC profile connection 
space, on the perceptual intent, does use CIE L*a*b in a way that 
does not represent physical colors but a scaling of the device 
gamut. Black point in Version 4 perceptual PCS is represented as 
(3.1372, 0, 0) in Lab coordinates. In Version 2 PCS, Black point is 
represented by a perfect absorber (0, 0, 0). Because that, some 
situations can end in negative XYZ or L* numbers, or values of L* 
that exceeds 100. 

An unbounded CMM should keep all those temporary values, 
and clip only in situations where there are no other options. 
Indexing tables is a clear example, since the table imposes an input 
domain, values outside this domain should be clipped as there are 
no table entries for other values and the unbounded function is 
undefined. In those situations, the CMM may decide to switch 
back to bounded mode. 

Version 4 does introduce parametric curves. On certain 
parameters, some of those curves may be undefined on negative 
domains, or return complex numbers. In that case the CMM should 
also switch back to bounded mode. For most cases, on parametric 
curve types, as well as in pure exponentials already found on V2, 
unbounded mode can be used without problems. 

 

 
Use cases 

Unbounded mode opens ICC color management to several 
new applications. First use to come in mind is image processing. 
Many image processing operators can be effectively used on data 
which is negative, or above white. Other area where unbounded 
mode makes a lot of sense is in gamut mapping, where pivot points 
may need to be computed in the target color space but outside the 
device gamut. In general, all situations where a perfect round-
tripping is needed can benefit from unbounded mode. 

 
Some editing is best done in a linear-light Scene Space 

Effects (such as motion blur or adding shadows) are more 
photorealistic when made in scene colorimetry. 

 

 
Figure 6. Motion blur in linear scene color space versus same effect in a 

clipped space. 
 

Another use would be workspaces. By using unbounded 
mode, an AdobeRGB image can be manipulated on sRGB working 
space without any loss. Preview of unbounded sRGB to monitor 
space is possible and easy, as negative or out of sRGB gamut may 
fall inside monitor or printer gamut. 

There are other not so evident uses for unbounded data, like 
high dynamic range imaging. Since unbounded mode can naturally 
deal with highlights (L* over 100) and drop shadows (values 
below black point), unbounded mode can be used on motion 
cinema, where dynamic range is often broader that the reference 
color space. Note that adjustments for viewing conditions can 
result in such out of range values. Even for image storage, 
unbounded mode may be interesting. If we want to store a bunch 
of images in a common colorspace, but we want to avoid data loss, 
a format capable to store out of gamut values (like float TIFF, for 
example) and an unbounded CMM may be very handy. 

 
Those are only samples of the amount of new applications 

unbounded modes would have. It is likely further investigation will 
find new and exciting ways to use such feature. An unbounded 
CMM can be turned into a bounded one. In this case, clipping 
happens only on the last stage or when is absolutely required. 

Suitable profiles 
A big number of yet-existing profiles have been inspected by 

the author in order to know how well unbounded mode could be 
used. Some of yet-existing V2 ICC profiles are already not limited 
by bounds. That is the case of profiles implemented as a 3x3 
matrix plus a set of curves. Those are known as “matrix-shaper” 
profiles. Well known samples are AdobeRGB1998 and sRGB 
profiles. AdobeRGB does use a pure exponential for curves, so the 
profile may be directly used in unbounded mode. The traditional 



 

sRGB does use tables for describing the curve, and unfortunately 
this prevents the profile to be used in unbounded mode. However, 
if we examine the sRGB specification, the curves are defined in all 
real domains, and using a V4 profile we can implement an 
unbounded sRGB by using a parametric curve of type 4: (IEC 
61966-2.1)  

 
 y = f4(x) = cx + f,                    0 ≤ x < d 

              = (ax + b)γ + e,         d ≤ x ≤ 1  
Where: 
 

 γ = 2.4;  a = 1. / 1.055;  b = 0.055 / 1.055;   
   c = 1. / 12.92;  d = 0.04045;    e = f = 0; 

 (1) 

 

Using this mechanism, a built-in version 4 sRGB profile has 
been included in the reference implementation, see below. Other 
important profiles found to work well in unbounded mode are 
version 4 profiles for synthetic color spaces like ISO 22028 2 
ROMM RGB and RIMM RGB (Pro Photo RGB). Eci RGB V2, 
the working colour space profile recommended by ECI, has been 
also found to work flawless, as well as many others not mentioned 
here because the limited extension of this paper. 

 

CMM Implementation and availability 
As a practical demonstration that unbounded mode CMM can 

be implemented and to experiment with this new mode, Little 
CMS, a very popular open-source CMM has been accommodated 
to work in unbounded mode. Implementation has been very 
difficult. It toke about 2 years, and changes are significant: all 
computation is now done in floating point and clipping, if needed, 
happens late on the pipeline. Version 2.0 is practically a full 
rewrite of the original color engine. Because it is no longer 
backwards compatible, a major version bump has been needed, so 
Little CMS 2.0 is now available for free as one of the very first 
unbounded CMM at any cost. The license used is MIT, which is 
very liberal: 

 
 http://www.opensource.org/licenses/mit-license.php  
 

The full package is available at: 
 
http://www.littlecms.com/downloads.htm 
 
All internal computations have been rewritten to use floating 

point and all bounding and internal clipping operations have been 
removed. This had a severe impact on performance, so a special 
optimization module for bounded formats was created. Now the 
color engine does compute always the unbounded transform and 
passes it to the optimizer. The optimizer, after inspection of the 
input and output formats, is able to clip the data if bounded mode 
is detected. Despite what it may seem, that accomplished a 
performance gain of about 400% in some cases, like 8-bit RGB to 
RGB transforms. 
 

To check the engine capabilities, several independent client 
programs have been developed. Transicc is a command-line utility 

that can process plain text or CGATS files containing data across 
chains of ICC profiles in either bounded or unbounded mode. 
Jpgicc and Tificc allow applying ICC transforms to TIFF and 
JPEG files. There is also a Matlab MEX, which is capable to apply 
Little CMS 2 color transformations to images and arrays using the 
Matlab package. 

Conclusions 
Although unbounded mode implementation has its challenges, 

it is certainly a valuable tool. This paper describes the effects 
bounding has, compare results against unbounded mode, identifies 
some of the advantages unbounded mode may have, and introduces 
an open source implementation under a very liberal license.  
Finally, some of the possible uses for unbounded mode CMM are 
outlined. 
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