

Unbounded Color Engines
Marti Maria; Little CMS; Palamós; Catalonia, Spain

Abstract
A Color Matching Method (CMM), also called a Color

Engine, is a software component that does the color conversion
calculations from one device's color space to another. This paper
discuses a new working mode for CMMs that allows such software
components to operate in a way that is not restricted by the gamut
of the device encoding, the gamut of the profile connection space
or any intermediate step. This allows ICC profiles to be used in
new ways for a variety of applications. An open source CMM
implementing this mode is also introduced.

Background
One of the main components of a color management system is

the Color Matching Method, (CMM), which is the software engine
in charge of controlling the color transformations that take place
inside the system. By today, the vast majority of color management
systems do use International Color Consortium (ICC) profiles.

ICC color management is based on device characterization

profiles. Color transformations can be obtained by linking those
profiles. This can be done because ICC has defined a standard
profile connection space, the ICC PCS, which can either be XYZ
or CIE L*a*b*. Each ICC profile describes how to do the
conversion between the device color space and the profile
connection space. In the ICC paradigm, all the smarts of the color
conversion are embedded into profiles, and the CMM just
concatenates them with some minor adjustments. This is known as
the “smart profiles, dumb CMM” approach.

Figure 1. ICC color transforms as profile concatenation

To implement the conversion device/PCS, ICC profiles can
internally use three different math primitives: matrices, curves and
multidimensional interpolation tables. Only certain combinations
of those primitives are allowed, depending on the profile version
and the direction being used.

Up to the ICC specification 4.2, profiles had a limit on the
precision they could deliver. The internal encoding of profiles did
force them to have a precision of 8 or 16 bits at most. That limit on
precision was a stopper in the adoption of ICC profiles by some
applications, like RAW photo processing or digital cinema, where
greater levels of accuracy are required. See figure 2 for a DPX real
world example, where input values 0-40 map to same output value
2, and 16-bit integer encoding cause severe quantization in
shadows.

To overcome this limitation, in November 2006 the ICC

approved the Floating Point Encoding Range addendum to the
profile specification. With the introduction of floating-point data in

the spec, ICC profiles are no longer limited to 8 or 16 bit, but to
the broad range of 32-bit IEEE 754 floating point. That was a huge
improvement when regarding precision and dynamic range, which
is now only limited by floating point representation and can take as
much as 1039

Figure 2. KODAK VISION2 500T Color Negative Film 5218 / 7218

This addendum, however, introduced another improvement
perhaps not so evident but equally important. Floating point
encoding has a huge domain, which is nearly infinite, much larger
than any real gamut. Based on that, one could think that a capable
CMM using such kind of profiles could operate in an “unbounded
mode” that would not have the limits that traditional CMMs have.

Further investigation has demonstrated that it is certainly

possible to write such CMM. And moreover, some old, very
popular, ICC profiles can be successfully used in this unbounded
mode as well, without any modification at all. Compatibility with
existing profiles is a key feature to properly leverage a new feature.
Many of the yet-existing images are encoded in popular color
spaces like sRGB or AdobeRGB, and have those profiles
embedded. A CMM capable to work in unbounded mode with such
images and with such profiles would certainly be easier to adopt
that any system requiring new profiles and new encodings for
every single image.

Bounds in ICC color management
In ICC specifications previous to the Floating Point Encoding

Range addendum, device encoding range must have definite
bounds. According that, most, if not all, of today’s CMM perform
some sort of clipping. To enumerate a few samples: Adobe ACE,
Apple ColorSync and Windows ICM.

Clipping happens because several reasons. One is the

encoding of the device space. If we use a 8 or 16 bit representation
of the color space, all encodeable values are inside device gamut
by definition, and there is no way to represent out of gamut values.
For example, in the traditional 8-bit encoding, device values goes
from 0 to 255. This is encoded in one byte taking all available bits,
and therefore there is no way to represent negative numbers or
values over 255. 16 bit gives more precision but still clips values to
be inside realizable gamut.

Figure 3. RGB device encoding bounding

More subtle clipping can happen inside the CMM without any

evident trace to the end user, as another source of clipping in ICC
color management is the encoding of profile connection space
itself. Version 2 Lab PCS is based on an ideal reflection print that
has white point mapped on perfect diffuser and black point mapped
on perfect absorber. Real device range is then scaled to this
hypothetical media which has infinite dynamic range. As a result,
real device black point is mapped to Lab (0, 0, 0), and real device
white point is mapped to Lab (100, 0, 0). The mapping of the
measured colorimetry of the device white to (100, 0, 0) is
accomplished using linear XYZ scaling. The media white point tag
is then used to undo the scaling of the device white to produce
"ICC-absolute" colorimetry values which are relative to the
assumed adapted white.

The reason to do this normalization is to maximize profile

connectivity in perceptual and saturation rendering intents. In
normal ICC operation mode, the device encoding bounding do not
limit the dynamic range that can be supported because there are no
restrictions on the relation between the device encoding minimum
and black, or between the device encoding maximum and the
assumed adapted white. But as a side effect of that mapping,
values below black point are not encodeable; they result in
negative L* or XYZ and most CMM clips them to zero. Highlights
over white point may suffer same clipping, since the perceptual
PCS does map device white point to Lab (100, 0, 0). Since this
happens in the profile connection space, the end user does not see
this effect directly but as an indirect result

XYZ PCS has an encodeable range of [0...1.99997] which

encompasses most of today gamuts, It is unlikely that any device
values will have corresponding D50 chromatically adapted XYZ
values above 1.99997. However, it is possible for this to occur in
some unusual circumstances, for example in situations of extreme
fluorescence where the media white is much darker than some
saturated colors. The media white is defined to be the lightest
neutral color that a capture device can capture, or an output device
can produce. It is also possible that some device values may have
corresponding XYZ values that are negative. Such values can
result from digital camera color analysis matrices, or chromatic
adaptation transforms applied to extremely saturated blue colors.
In most cases, it is acceptable to clip negative XYZ values to zero
as such values do not correspond to real colors. However in some
cases this may be unacceptable, for example if perfect round
tripping is desired

Lab PCS is more limited. A device value of (0, 255, 0) in
AdobeRGB, for example, results in Lab (83.2, -128.1, 86.1) which
is not encodeable in Lab PCS. Lab PCS has a*/b* axis restricted to
128 127 in version 4 of the ICC spec. Version 2 of

ICC spec have slightly different limits: 128 127.996)
but again that’s not enough to hold entire AdobeRGB gamut.

Bounding CMM example
Let’s take an example to demonstrate the PCS clipping effect

by using Adobe Photoshop CS4. If we setup Photoshop to use
sRGB as working space, and convert by means of relative
colorimetric intent a Lab value of:

Lab = (0, -120, 0)

We will obtain sRGB = (0, 0, 0). That seems to be perfectly

reasonable as L*=0 maps to black. Now we can try a symmetrical
value, but on b* axis

Lab = (0, 0, -120)

In this case we obtain sRGB = (0, 27, 182), which is

somehow surprising given the (0, 0, 0) result obtained with the
previous value. Why Photoshop does clip one axis (a*) and does
not clip the other (b*) in the same fashion?

 The reason of such values is clipping performed on the PCS.
If we take first Lab value, and convert it to XYZ, we obtain;

XYZ = (-2.9, 0, 0)

Which has a negative value on X colorant. Since the CMM
performs PCS clipping, the XYZ value becomes (0, 0, 0) which is
readily translated to sRGB = (0, 0, 0). On the other hand, Lab = (0,
0, -120) converted to XYZ results in (0, 0, 33.1), which does not
suffer from PCS clipping, and therefore is translated to (0, 27,182)
by the sRGB equations:

Figure 4. XYZ to sRGB conversion

If we inspect sRGB equations, there is no place where hard
clipping is needed, and the math could perfectly deal with negative
XYZ numbers, despite those may have no physical meaning at all.
Computing the conversion without any clipping does result in
following values:

(0, 0, -120) (-536.1, 27.2, 181.7)
(0, -120, 0) (-307.0, 47.6 -7.0)

Those are clearly out of sRGB gamut. At that point we may

choose to perform the clipping as usual or to keep negative
numbers and let the calling application to take the pertinent action
on depending on the use application has for the resulting colors.
That latter would be an example of a CMM working in unbounded
mode.

Unbounded mode
Most CMM does allow using a variety of formats for both

input and outputting raster data. Some CMM allow using floating
point as an additional format. Since floating point allows a wide
range of values, the bounding introduced by the device encoding
format no longer applies. CMM often clips those floating point
values to be in [0...1.0] range because convention. But at that point
one could argue that this bounding is not strictly needed. Some
profiles are built by using elements that does not impose any
bounds at all. If a color transform is setup by using exclusively this
kind of profiles, and floating point is used as input and output
format, there are no constrains and the color transform is not
limited by any bounds. We would name this special mode as
unbounded CMM.

Some colorimetric space conversions are also likely to work

unbounded. Conversion from Lab to XYZ and vice-versa can run
unbounded, despite that would yield colors that are not physically
realizable. ICC currently only supports XYZ and Lab as profile
connection spaces.

Figure 5. XYZ to CIE L*a*b* conversion

At that point we should note that ICC profile connection
space, on the perceptual intent, does use CIE L*a*b in a way that
does not represent physical colors but a scaling of the device
gamut. Black point in Version 4 perceptual PCS is represented as
(3.1372, 0, 0) in Lab coordinates. In Version 2 PCS, Black point is
represented by a perfect absorber (0, 0, 0). Because that, some
situations can end in negative XYZ or L* numbers, or values of L*
that exceeds 100.

An unbounded CMM should keep all those temporary values,
and clip only in situations where there are no other options.
Indexing tables is a clear example, since the table imposes an input
domain, values outside this domain should be clipped as there are
no table entries for other values and the unbounded function is
undefined. In those situations, the CMM may decide to switch
back to bounded mode.

Version 4 does introduce parametric curves. On certain
parameters, some of those curves may be undefined on negative
domains, or return complex numbers. In that case the CMM should
also switch back to bounded mode. For most cases, on parametric
curve types, as well as in pure exponentials already found on V2,
unbounded mode can be used without problems.

Use cases

Unbounded mode opens ICC color management to several
new applications. First use to come in mind is image processing.
Many image processing operators can be effectively used on data
which is negative, or above white. Other area where unbounded
mode makes a lot of sense is in gamut mapping, where pivot points
may need to be computed in the target color space but outside the
device gamut. In general, all situations where a perfect round-
tripping is needed can benefit from unbounded mode.

Some editing is best done in a linear-light Scene Space

Effects (such as motion blur or adding shadows) are more
photorealistic when made in scene colorimetry.

Figure 6. Motion blur in linear scene color space versus same effect in a

clipped space.

Another use would be workspaces. By using unbounded
mode, an AdobeRGB image can be manipulated on sRGB working
space without any loss. Preview of unbounded sRGB to monitor
space is possible and easy, as negative or out of sRGB gamut may
fall inside monitor or printer gamut.

There are other not so evident uses for unbounded data, like
high dynamic range imaging. Since unbounded mode can naturally
deal with highlights (L* over 100) and drop shadows (values
below black point), unbounded mode can be used on motion
cinema, where dynamic range is often broader that the reference
color space. Note that adjustments for viewing conditions can
result in such out of range values. Even for image storage,
unbounded mode may be interesting. If we want to store a bunch
of images in a common colorspace, but we want to avoid data loss,
a format capable to store out of gamut values (like float TIFF, for
example) and an unbounded CMM may be very handy.

Those are only samples of the amount of new applications

unbounded modes would have. It is likely further investigation will
find new and exciting ways to use such feature. An unbounded
CMM can be turned into a bounded one. In this case, clipping
happens only on the last stage or when is absolutely required.

Suitable profiles
A big number of yet-existing profiles have been inspected by

the author in order to know how well unbounded mode could be
used. Some of yet-existing V2 ICC profiles are already not limited
by bounds. That is the case of profiles implemented as a 3x3
matrix plus a set of curves. Those are known as “matrix-shaper”
profiles. Well known samples are AdobeRGB1998 and sRGB
profiles. AdobeRGB does use a pure exponential for curves, so the
profile may be directly used in unbounded mode. The traditional

sRGB does use tables for describing the curve, and unfortunately
this prevents the profile to be used in unbounded mode. However,
if we examine the sRGB specification, the curves are defined in all
real domains, and using a V4 profile we can implement an
unbounded sRGB by using a parametric curve of type 4: (IEC
61966-2.1)

 y = f4(x) = cx + f, 0 ≤ x < d

 = (ax + b)γ + e, d ≤ x ≤ 1
Where:

 γ = 2.4; a = 1. / 1.055; b = 0.055 / 1.055;
 c = 1. / 12.92; d = 0.04045; e = f = 0;

 (1)

Using this mechanism, a built-in version 4 sRGB profile has
been included in the reference implementation, see below. Other
important profiles found to work well in unbounded mode are
version 4 profiles for synthetic color spaces like ISO 22028 2
ROMM RGB and RIMM RGB (Pro Photo RGB). Eci RGB V2,
the working colour space profile recommended by ECI, has been
also found to work flawless, as well as many others not mentioned
here because the limited extension of this paper.

CMM Implementation and availability
As a practical demonstration that unbounded mode CMM can

be implemented and to experiment with this new mode, Little
CMS, a very popular open-source CMM has been accommodated
to work in unbounded mode. Implementation has been very
difficult. It toke about 2 years, and changes are significant: all
computation is now done in floating point and clipping, if needed,
happens late on the pipeline. Version 2.0 is practically a full
rewrite of the original color engine. Because it is no longer
backwards compatible, a major version bump has been needed, so
Little CMS 2.0 is now available for free as one of the very first
unbounded CMM at any cost. The license used is MIT, which is
very liberal:

 http://www.opensource.org/licenses/mit-license.php

The full package is available at:

http://www.littlecms.com/downloads.htm

All internal computations have been rewritten to use floating

point and all bounding and internal clipping operations have been
removed. This had a severe impact on performance, so a special
optimization module for bounded formats was created. Now the
color engine does compute always the unbounded transform and
passes it to the optimizer. The optimizer, after inspection of the
input and output formats, is able to clip the data if bounded mode
is detected. Despite what it may seem, that accomplished a
performance gain of about 400% in some cases, like 8-bit RGB to
RGB transforms.

To check the engine capabilities, several independent client
programs have been developed. Transicc is a command-line utility

that can process plain text or CGATS files containing data across
chains of ICC profiles in either bounded or unbounded mode.
Jpgicc and Tificc allow applying ICC transforms to TIFF and
JPEG files. There is also a Matlab MEX, which is capable to apply
Little CMS 2 color transformations to images and arrays using the
Matlab package.

Conclusions
Although unbounded mode implementation has its challenges,

it is certainly a valuable tool. This paper describes the effects
bounding has, compare results against unbounded mode, identifies
some of the advantages unbounded mode may have, and introduces
an open source implementation under a very liberal license.
Finally, some of the possible uses for unbounded mode CMM are
outlined.

References
[1] Specification ICC.1:2001-04 File Format for Color Profiles,

International Color Consortium, available at http://www.color.org/

[2] Specification “ICC.1: 1998-09, File Format for Color Profiles,”

International Color Consortium, available at http://www.color.org/

[3] M. Maria. Little CMS Engine – How to use the Engine in Your

Application, 2004, Available from http://www.littlecms.com

[4] A Standard Default Color Space for the Internet: sRGB, Version

1.10, November 5, 1996. ICC

[5] Eastman Kodak Company, “Reference output Medium Metric RGB

Color Space (ROMM RGB) White Paper,” Version 2.2, 1 July 1999.

[6] R. W. G. Hunt. Measuring Colour. 8Fountain Press, 3rd edition,

1998.

[7] Mary Nielsen and Michael Stokes, The Creation of the sRGB ICC

Profile. IS&T/SID Sixth Color Imaging Conference: Color Science,
Systems and Applications. Scottsdale, Arizona, 253-257 (November
1998)

[8] Adobe RGB (1998) color image encoding. Version 2005-05.

Available at http://www.adobe.com/digitalimag/adobergb.html

[9] ICC Floating-Point Device Encoding Range, International Color

Consortium, available at
http://www.color.org/ICCSpecRevision_02_11_06_Float.pdf

Author Biography
Marti Maria is a color engineer at the large format printer division of

Hewlett-Packard. He worked previously at ICR; a company specialized in
imaging and color. Marti is also the author of well-known open source
color oriented packages, like the LittleCMS open CMM and the LPROF
profiler construction set. He has contributed to several color books and
was session chair on Color & Imaging Conference 16.

