% LiI’SCI|92

Engine API 2.18

https://www.littlecms.com

Copyright © 2026 Marti Maria Saguer, all rights reserved.

https://www.littlecms.com/

Contents

T o [T =T 0 g 1=T £ EPSS 5
[T o= g T [=T T 1= P 5
INSTAIATION ... 5
LINUX/UNICES ...ttt e e ettt e e e e e e e e e e e e e e 5
MESON BUII ...ttt e et e e e et e e e e nnt e e e e e anneeeaeeaneee 6
WiNndows® MS ViSUal StUAIOccueiieieieiiieeieecie ettt sne e 7
WiINdoWs® Borland CH++ 5.5oiiiiieieieciiceie ettt ettt 7
A o o)L 1V F= o RS 7
L@ 13T S PP PP TP PPOPPPPP 7
(O70] g1 1o (8] ¢=1i o] g1 (o]0 [o | [T TR 8
DLL COMPILATION and use (WIindoWs® ONlY).........cccueeeiieeeeiceiee e e eeee e 10
ASSEITING .o 10
Included files (AEPENAENCIES)........couuiuiiii i 11
GENEIIC LYPES i 12
Common constants and version retrivalccc.uuuieiiii e 13
CONEEXES . 14
PIUG- NS 18
L e o (o T T T ISR 20
[O NANAIETS .. 22
Profile acCess fUNCHIONSooiiiiiiiii e 25
Predefined virtual Profilesoooo i 31
Obtaining localized info from profiles ... 43
Reading the unicode variant on V2 profiles ... 44
Profile feature deteCtionooo i 46
Accessing Profiler NEAAETuuuiiiiiii e 48
Device attribUtesoooiiiiiiiii e 51
Profil@ ClaSSES ...t 52
Profile VErsioNiNg..........ooiiiiiiiiiiiie ettt 53
Info on profile IMPleMENtatioN e 55
COlOr SPACES. ... 56

Containers in floating point format............ccuuiiii 59

Encoding /Decoding 0N PCS ... 62
ACCESSING TA0S. .. eeeiiiiii ettt et e e e e e e e e e e e et et aaaaaaaraaa 64
TG Y S e 64
LI T £ TP PP URSPPPPRRPIR 65
Accessing tags as raw data..........ooooeioiiiiiiie 71
Profile StrUCIUIES ... 73
PlatformMS ..ot 74
ReferenCe QamUt............uiiiiii e 74
IMAGE STALE ... e 74
Pipeline Stages (Multi processing elements) ... 75

F O M OIS . 77
Macros to build formatters ... 77
Macros to extract information from formatters.............cccoiii 77
Color spaces in Little CMS notation..............uoiiiiiiiiicc e 78
Translate color space from/to Little CMS notation to ICCcccoooiiiiiiiiie e, 79
Predefined formatters. ... 80

F N[o g =T o3 0 = T] 1= U 84
Other tabIES. ...ttt 90
1] (= N 92
=T 1P 95
Color tranSfOrMS ..o 96
Proofing transfOrmMSoooieiiieeeeeeeeeee 101
MURIProfile tranSfOrMS 105
Dynamically changing the input/output formats............coooeiiiii 107
POSESCript GENEratioN.cooeeeeeeeeeee e 109
AN o 4= 4T 111
Temperature <-> Chromaticity (Black body)...........cccuiiiiiiiiiiiiee e 114
CIE CAMOZ. ...ttt e e ettt e e e ettt e e e e st e e e e e e s teeaeeanseeaeeansaeaeeannseeaeeanees 115
Gamut boundary deSCriPHONcoiiiiiie e 117
GamUE MAPPING e 119
MD5 MESSAGE ISt ... 120

CGATS.17-200X NANAING ...ttt e 122

Requirements

Requirements

Little CMS 2 requires a C99 compliant compiler. gcc 3.2 and above, Intel compiler, clang,
llvm and Borland 5.5 does support C99 standard. In addition, Microsoft® Visual C++ 2017,
2019 and 2022 are supported as well.

Dependencies
If you plan to compile the tifficc and jpgicc utilities, you need to have following libraries
installed. Please refer to documentation of each library for installation instructions.

tifficc Lib TIFF http://www.simplesystems.org/libtiff/
jpgicc | Independent JPEG | http://www.ijg.org/

Group
Installation

Linux/unices

Unpack & untar the tarball, cd to the newly created directory and type:

./configure
make
make check

This latter will run the testbed program as well. If you want to install the package, type:

sudo make install

This does copy API include files into /usr/local/include and libraries into /usr/local/lib. You
can change the installation directory by using the —prefix option

There are additional targets on the Makefile:

install: linstalls packages (needs sudo)

check: Builds and executes testbed program

clean: Deletes object & binary files

distclean: Deletes any file not present in the distribution package
dist: Creates the distribution files

uninstall: removes pakage from system (needs sudo)

http://www.ijg.org/

Installation [N

In the case you have autotools installed (autoconf, automake and so) and would like to
regenerate the configure script, you can use the provided script:

.Jautogen.sh

To erase all files not needed for “configure” generation, type

.Jautogen.sh --distclean

Note that doing so will left the project without a way to be configured. You need to run the
autogen.sh script again to generate the needed files.

There are optional plug-ins that comes in the standard distribution. Since the license for
those plug-ins is not same as the core library, the confgure script does NOT enable plug-ins
by default. You can add the plug-ins into your libraries by typing adequate toggles to
configure script. i.e.:

./configure —with-fastfloat
./configure —with-threaded

MESON Build

Since 2.15 LittleCMS and plug-ins can also be built by Meson.
https://en.wikipedia.org/wiki/Meson_(software)

There are several ways to compile LittleCMS with meson, the most usual one is:

meson setup build/
meson test -C build
sudo meson install -C build

plug-ins and samples compilation are selectable. Use meson configure to see the exact
settings.

Note: meson build for Cygwin and MinGW/MSYS2 are NOT supported. Use auto-tools or
Windows Subsystem for Linux (WSL) instead.

https://en.wikipedia.org/wiki/Meson_(software)

Installation

Windows® MS Visual Studio

There are projects for most popular environments in the 'Projects’ folder. Just locate which
one you want to use.

Windows® Borland C++ 5.5

BC 5.5 is partially supported. It compiles Little CMS as a DLL with some limitations. There
is a BorlandC_5.5 folder in Projects that contains the necessary scripts. Run mkicmsdll.bat
to get the DLL compiled.

Apple® Mac

There is an X-Code project in the ‘Projects’ folder. In addition, you can use the procedure
described in Linux/unices section. Using this latter, Little CMS has been tested to work in
Catalina x64 and Sequoia on Apple silicon M1 and M3 armé64.

Other

For Solaris and other, you could try the procedure described Linux/unices section. Autotools
scripts does work in a multitude of different environments. If this doesn’t work, any C99
compliant compiler should be able to deal with the code. | have checked on embedded Linux
kernels like STM32, Cortex-M, Cortex-A and it works ok with gcc. Please let me know if you
experiment issues when porting the code.

Note: Make sure to instruct your compiler to use C99 convention. In gcc, you can add:

\ -std=gnu99

Without that, ULLONG_MAX wouldn’t be defined in some situations.

Installation AN

Configuration toggles

Icms2.h is coded in a way that tries to automatically detect the better configuration for the
current compiler. However, in some situations (unchecked compilers/environments) it may
need some “‘manual override”. To do so, comment/uncomment following symbols in
Iems2.h, the test bed program may hint to manually change some of those flags.

CMS_DLL Define this if you are using this
package as a DLL (windows
only)

CMS_DLL_BUILD Define this if you are compiling
this package as a DLL (windows
only)

CMS_USE_BIG_ENDIAN Uncomment this symbol if you
are using non-supported big
endian machines and the test
bed hints to do so.
CMS_DONT_USE_INT64 Uncomment this symbol if your
compiler/machine does NOT
support the "long long" type.
This is automatically detected
on most cases
CMS_DONT_USE_FAST_FLOOR Uncomment this if your compiler
doesn't work with fast floor
function. The test bed will hint to
do so if necessary.
CMS_USE_PROFILE_BLACK_POINT_TAG Uncomment this line if you want
lcms2 to use the black point tag
in profile, if commented, lcms2
will compute the black point by
its own. Important note: It is
safer to leave it commented out,
as black point detection feature
will work even for missing or
wrong black point tags.
CMS_BASIC_TYPES_ALREADY_DEFINED Define this one if you want to
define the basic types
elsewhere, and want Icms2.h to
reuse those types.
CMS_STRICT_CGATS Define this one if you want strict
CGATS.13 parsing. By default,
Little CMS is tolerant to some
issues, like missing
*KEYWORD?” definitions. If you
want errors raised on such
situations, define this symbol.
CMS_NO_PTHREADS Uncomment to get rid of
pthreads/windows dependency.
Without pthreads only
cmsDoTransform is reentrant.

Installation AN

CMS_RELY_ON_WINDOWS_STATIC_MUTEX_INIT | For pre Windows XP
compatibility. See
lems2_internal.h
CMS_NO_REGISTER_KEYWORD Uncomment this to remove the
“register” storage class

NOTE: Some compilers exhibit
a weird behavior on the use of
register in parameters. C++17
compilers may warn about
register keyword being
deprecated. | found this
happens only if the file with the
register keyword is not placed in
a system include folder. Be
careful when using this option
with a shared object like any
*.s0 or *.dll, since ABI may be
broken due to interface change.
Checking compatibility is left to
user’s discretion.
CMS_NO_VISIBILITY Uncomment this to remove
visibility attribute when building
shared objects.

Table 1

Installation

DLL COMPILATION and use (Windows® only)

To use Little CMS as DLL, you need to define the symbol CMS_DLL when compiling
Iems2.h, this is easily done by using the toggle -DCMS_DLL on gcc, other compilers may
use different syntax.

Similarly, to compile Little CMS to produce a DLL, you need to define the symbol
CMS_DLL_BUILD. On Visual Studio, you can define this symbol on Properties, C/C++,
Preprocessor, Preprocessor definitions. There is a project that builds such DLL in the
Projects folder.

Asserting

Internally, Little CMS uses an internal assert function to catch run-time errors. This macro is
not exposed to Little CMS API and is enabled only in debug builds. You can disable this
functionality by editing Icms2_internal.h, although is highly recommended to leave
untouched as a checking feature. In Release builds, no code is generated.

_cmsAssert(a)

Parameters:
a: logical expression

Returns:
None

Included files (dependencies)

Used by Icms2.h

#include <stdio.h>
#include <limits.h>
#include <time.h>
#include <stddef.h>

Used by Iecms2_plugin.h
#include <stdlib.h>
#include <math.h>

#include <stdarg.h>
#include <memory.h>
#include <string.h>

Used Internally

#include <ctype.h>

Installation

Generic types

Generic types

Basic types are automatically detected and defined by Iems2.h You can override them by
defining CMS_BASIC_TYPES_ALREADY_DEFINED. In this case, you must define such
types before including Iems2.h

Basic Types Bits Signed Comment
cmsUInt8Number 8 No Byte
cmsInt8Number 8 Yes
cmsUInt16Number 16 No Word
cmsint16Number 16 Yes
cmsUInt32Number 32 No Double word
cmsiInt32Number 32 Yes Native int on most 32-bit architectures
cmsUInt64Number 64 No
cmsint64Number 64 Yes
cmsFloat32Number 32 Yes IEEE float
cmsFloat64Number 64 Yes IEEE cmsFloat64Number
cmsBool ? No TRUE, FALSE Boolean type, which will
be using the native integer
Table 2
Derivative Types Bits Signed Comment
cmsSignature 32 No Base type for ICC signatures

cmsU8Fixed8Number 8.8=16 No
cmsS15Fixed16Number | 15.16 = 32 Yes Fixed point
cmsU16Fixed16Number | 16.16 = 32 No

Table 3
Handles Comment
cmsHANDLE Generic handle=void*
cmsHPROFILE Handle to a profile
cmsHTRANSFORM Handle to a color transform

Table 4
Opaque typedefs Comment
cmsContext Pointer to undisclosed cms_context_struct
cmsToneCurve Pointer to undisclosed cms_curve_struct
cmsMLU Pointer to undisclosed cms_MLU_struct
cmsIOHANDLER Pointer to undisclosed _cms_io_handler
cmsNAMEDCOLORLIST | Pointer to undisclosed _cms NAMEDCOLORLIST _struct

Table 5

Common constants and version retrival

Common constants and version retrival

Those are utility constants defined in Icms2.h

Version/release

LCMS_VERSION 2170

Maximum number of chars in a path

cmsMAX_PATH 256

Maximum number of channels in ICC profiles

cmsMAXCHANNELS 16

Magic number to identify an ICC profile

cmsMagicNumber 0x61637370 'acsp’

Little CMS signature

IcmsSignature 0x6¢636d73 'lcms'

2.9

int cmsGetEncodedCMMversion(void);

Returns the value of LCMS_VERSION. This function is here to help applications to prevent
mixing Icms versions on header and shared objects. A safety check can be used to prevent
unwanted version mixing. i.e. assert(LCMS_VERSION == cmsGetEncodedCMMversion());

Parameters:
none

Returns:
the value of LCMS_VERSION.

Contexts

Contexts

There are situations where several instances of Little CMS engine have to coexist but on
different conditions. For example, when the library is used as a DLL or a shared object,
diverse applications may want to use different plug-ins. Another example is when multiple
threads are being used in same task and the user wants to pass thread-dependent
information to the memory allocators or the logging system. For all this use, Little CMS 2.6
and above implements context handling functions. The type cmsContext is a pointer to an
internal structure that keeps track of all plug-ins and static data needed by the THR
corresponding function. A context-aware app could allocate a new context by calling
cmsCreateContext() or duplicate a yet-existing one by using cmsDupContext(). Each
context can hold different plug-ins, defined by the Plugin parameter when creating the
context or later by calling cmsPluginTHR(). The context can also hold loggers, defined by
using cmsSetLogErrorHandlerTHR() and other settings. To free context resources,
cmsDeleteContext() does the job. Users may associate private data across a void pointer
when creating the context, and can retrieve this pointer by using cmsGetContextUserData().
Context ID of 0 is a special case that holds the global context, for non-THR functions.

Important Note: Prior to 2.6, cmsContext was just a void pointer to user data. 2.6 redefined
the meaning of contexts and therefore the binary backwards compatibility in the absolute
sense was broken. However, the library tries to guess whatever the context is being used in
the old way, and behave in consequence. Any cmsContext created by cmsCreateContext()
or cmsDupContext() behaves in the new way. Otherwise it is assumed a void pointer to user
data. Users are strongly encouraged to use cmsCreateContext() function instead of passing
raw user data.

[2.6]

cmsContext cmsCreateContext(void* Plugin, void* UserData);

Creates a new context with optional associated plug-ins. Caller may specify an optional
pointer to user-defined data that will be forwarded to plug-ins and logger.

Parameters:
Plugin: Pointer to plug-in collection. Set to NULL for no plug-ins.

UserData: optional pointer to user-defined data that will be forwarded to plug-ins
and logger. Set to NULL for none.

Returns:
A valid cmsContext on success, or NULL on error.

Note: All memory used by this context is allocated by using the memory plugin, if present,
this includes the block for the context itself.

Contexts

[2.6]

cmsContext cmsDupContext(cmsContext ContextID, void* NewUserData);

Duplicates a context with all associated plug-ins. Caller may specify an optional pointer to
user-defined data that will be forwarded to plug-ins and logger.

Parameters:
UserData: optional pointer to user-defined data that will be forwarded to plug-ins

and logger. Set to NULL for using user defined pointer from the source context.

Returns:
A valid cmsContext on success, or NULL on error.

2.6

void cmsDeleteContext(cmsContext ContextID);

Frees any resources associated with the given context, and destroys the context
placeholder. The ContextID can no longer be used in any THR operation.

Parameters:
ContextID: Handle to user-defined context.

Returns:
None

Notes:
The system context, ContextID = NULL cannot be used, the function does nothing

in this case.

Contexts

[2.6]

void* cmsGetContextUserData(cmsContext ContextlD);

Returns the user data associated to the given ContextID, or NULL if no user data was
attached on context creation

Parameters:
ContextID: Handle to user-defined context.

Returns:
Pointer to a user-defined data or NULL if no data.

Notes:
The system context, ContextlID = NULL cannot be used in this function.

2.0

cmsContext cmsGetProfileContextlD(cmsHPROFILE hProfile);

Returns the ContextID associated with a given profile.
Parameters:
hProfile: Handle to a profile object

Returns:
Pointer to a user-defined context cargo or NULL if no context

cmsContext cmsGetTransformContextlID(cmsHTRANSFORM hTransform);

Returns the ContextID associated with a given transform.
Parameters:
hTransform: Handle to a color transform object.

Returns:
Pointer to a user-defined context cargo or NULL if no context.

Contexts

2.13

cmsContext cmsGetStageContextlD(const cmsStage™ mpe);

Returns the ContextID associated with a given stage object
Parameters:

mpe: a pointer to a stage object.

Returns:
The context of a given stage object

Plug-Ins

Plug-Ins

By using plug-ins you can use the normal API to access customized functionality. Licensing
is another compelling reason; you can move all your intellectual property into plug-ins and
still be able to upgrade the core Little CMS library and still stay in the open source side. See
the Plug-in APl documentation for further information. The suggested way to use plug-ins is
across contexts, but you can first allocate a context with no plug-ins and then invoke the
cmsPluginTHR function. The easiest one works on the global context.

2.9

cmsBool cmsPlugin(void*® Plugin);

Declares external extensions to the core engine in the global context. The "Plugin”
parameter may hold one or several plug-ins, as defined by the plug-in developer.

Parameters:
Plugin: Pointer to plug-in collection.

Returns:
TRUE on success FALSE on error.

2.0

void cmsUnregisterPlugins(void);

This function returns Little CMS global context to its default pristine state, as no plug-ins
were declared. There is no way to unregister a single plug-in, as a single call to cmsPlugin()
function may register many different plug-ins simultaneously, then there is no way to identify
which plug-in to unregister.

Parameters:
None

Returns:
None

Plug-Ins

2.6

cmsBool cmsPluginTHR(cmsContext ContextlD, void* Plugin);

Installs a plug-in bundle in the given context.

Parameters:
ContextID: Handle to user-defined context.

Plugin: Pointer to plug-in bundle.

Returns:
TRUE on success FALSE on error.

2.6

void cmsUnregisterPluginsTHR(cmsContext ContextlID);

This function returns the given context its default pristine state, as no plug-ins were declared.
There is no way to unregister a single plug-in, as a single call to cmsPluginTHR() function
may register many different plug-ins simultaneously, then there is no way to identify which
plug-in to unregister.

Parameters:
ContextID: Handle to user-defined context.

Returns:
None

Error logging

Error logging

When a function fails, it returns proper value. For example, all create functions does return
NULL on failure. Other may return FALSE. It may be interesting, for the developer, to know
why the function is failing, for that reason, Little CMS offers a logging function. This function
will get an english string with some clues on what is going wrong. You can show this info to
the end user if you wish so, or just create some sort of log on disk.

The logging function should NOT terminate the program, as this obviously can leave leaked
resources. It is the programmer's responsability to check each function return code to make
sure it didn't fail. The default logger does nothing.

Error family Defined as
cmsERROR_UNDEFINED
cmsERROR FILE

cmsERROR _RANGE

cmsERROR _INTERNAL
cmsERROR_NULL
cmsERROR_READ
cmsERROR_SEEK
cmsERROR_WRITE
cmsERROR_UNKNOWN_EXTENSION
cmsERROR_COLORSPACE_CHECK
cmsERROR_ALREADY DEFINED 10
cmsERROR _BAD_SIGNATURE 11
cmsERROR_CORRUPTION DETECTED | 12

cmsERROR_NOT_SUITABLE 13
Table 6

OO NN |A|WINI=~|O

Error logger is called with the ContextID when a message is raised. This gives the chance
to know which thread is responsible of the warning and any environment associated with it.
Non-contexted applications may ignore this parameter. Please note that, by default
ContextID is 0 (the global context).

typedef void (* cmsLogErrorHandlerFunction)(cmsContext ContextID,
cmsUInt32Number ErrorCode,
const char *Text);

Definition of error logging callback.

Error logging

2.9

void cmsSetLogErrorHandler(cmsLogErrorHandlerFunction Fn);

Allows user to set any specific logger on global context. Each time this function is called, the
previous logger is replaced. Calling this functin with NULL as parameter, does reset the
logger to the default Little CMS logger. The default Little CMS logger does nothing.

Parameters:
Fn: Callback to the logger (user defined function), or NULL to reset Little CMS fto its

default logger.

Returns:
None

2.6

void cmsSetLogErrorHandlerTHR(cmsContext ContextlD,
cmsLogErrorHandlerFunction Fn);

Allows user to set any specific logger for the given context. Each time this function is called,
the previous logger is replaced. Calling this functin with NULL as parameter, does reset the
logger to the default Little CMS logger. The default Little CMS logger does nothing.

Parameters:
ContextID: Handle to user-defined context, or NULL for the global context

Fn: Callback to the logger (user defined function), or NULL to reset Little CMS to its
default logger.

Returns:
None

IO handlers

10 handlers

IO handlers are abstractions used to deal with files or streams. All reading/writing of ICC
profiles and PostScript resources are done by using 10 handlers. IO handlers do support
random access. Advanced users may want to write their own IO handlers, see the plug-in
API documentation for further details.

2.9

cmslOHANDLER®* cmsOpenlOhandlerFromFile(cmsContext ContextlD,
const char* FileName,
const char* AccessMode);

Creates an 10 handler object from a disk-based file. Note filename is limited to UTF-8 in
this function.

Parameters:
ContextID: Pointer to a user-defined context cargo.
FileName: Full path of file resource

[i

AccessMode: “r’ to read, “w” to write.

Returns:
A pointer to an iohandler object on success, NULL on error.

cmslOHANDLER* cmsOpenlOhandlerFromStream(cmsContext ContextlD,
FILE* Stream);

Creates an IO handler object from an already open stream.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A pointer to an iohandler object on success, NULL on error.

IO handlers

2.0

cmsIOHANDLER* cmsOpenlOhandlerFromMem(cmsContext ContextID,
void “Buffer,
cmsUInt32Number size,
const char® AccessMode);

Creates an 10 handler object from a memory block. Limited to 4Gb.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Buffer: Points to a block of contiguous memory containing the data
size: Buffer's size measured in bytes.
AccessMode: “r’ to read, “w” to write.

Returns:
A pointer to an iohandler object on success, NULL on error.

2.0

cmsIOHANDLER* cmsOpenlOhandlerFromNULL(cmsContext ContextlD);

Creates a void iohandler object (similar to a file iohandler on /dev/null). All read operations
returns 0 bytes and sets the EOF flag. All write operations discards the given data.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A pointer to an iohandler object on success, NULL on error.

cmsBool cmsCloselOhandler(cmslIOHANDLER® io);

Closes the iohandler object, freeing any associated resources.
Parameters:
io: A pointer to an iohandler object.

Returns:
TRUE on success, FALSE on error. Note that on file write operations, the real

flushing to disk may happen on closing the iohandler, so it is important to check the
return code.

IO handlers

2.8

cmsIOHANDLER* cmsGetProfilelOhandler(cmsHPROFILE hProfile);

Returns the iohandler used by a given profile object.
Parameters:
hProfile: Handle to a profile object

Returns:

On success, a pointer to the iohandler object used by the profile. NULL on error.

Profile access functions

Profile access functions

These are the basic functions on opening profiles. For simpler operation, you must open two
profiles using cmsOpenProfileFromFile, and then create a transform with these open profiles
with cmsCreateTransform. Using this transform you can color correct your bitmaps by
cmsDoTransform. When you are done you must free the transform AND the profiles by
cmsDelete Transform and cmsCloseProfile.

2.0

cmsHPROFILE cmsOpenProfileFromFile(const char *ICCProfile,
const char “sAccess);

Opens a file-based ICC profile returning a handle to it.

Parameters:
ICCProfile: File name w/ full path.

SAccess: "r" for normal operation, "w" for profile creation

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsOpenProfileFromFileTHR(cmsContext ContextlD,
const char *ICCProfile,
const char “sAccess);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

ICCProfile: File name w/ full path.
sAccess: "r"for normal operation, "w" for profile creation

Returns:
A handle to an ICC profile object on success, NULL on error.

Profile access functions

2.0

cmsHPROFILE cmsOpenProfileFromStream(FILE* ICCProfile, const char® sAccess);

Opens a stream-based ICC profile returning a handle to it.

Parameters:
ICCProfile: stream holding the ICC profile.

sAccess: "r"for normal operation, "w" for profile creation

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsOpenProfileFromStreamTHR(cmsContext ContextID,
FILE* ICCProfile,
const char* sAccess);

Same as anterior, but allowing a ContextlD to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsOpenProfileFromMem(const void * MemPtr,
cmsUInt32Number dwSize);

Opens an ICC profile which is entirely contained in a memory block. Useful for accessing
embedded profiles. MemPtr must point to a buffer of at least dwSize bytes. This buffer must
hold a full profile image. Memory must be contiguous.

Parameters:
MemPtr: Points to a block of contiguous memory containing the profile
dwsSize: Profile's size measured in bytes.

Returns:
A handle to an ICC profile object on success, NULL on error.

Profile access functions

2.0

cmsHPROFILE cmsOpenProfileFromMemTHR(cmsContext ContextID,
const void * MemPtr, cmsUInt32Number dwSize);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.
MemPtr: Points to a block of contiguous memory containing the profile
dwSize: Profile's size measured in bytes.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsOpenProfileFromlOhandlerTHR(cmsContext ContextID,
cms|lOHANDLER® io);

Opens a profile, returning a handle to it. The profile access is described by an IOHANDLER.
See 10 handlers section for further details.

Parameters:
ContextID: Pointer to a user-defined context cargo.

lo: Pointer to a serialization object.

Returns:
A handle to an ICC profile object on success, NULL on error.

Profile access functions

2.6

cmsHPROFILE cmsOpenProfileFromlOhandler2THR(cmsContext ContextlD,
cmsIOHANDLER* io
cmsBool write);

Opens a profile, returning a handle to it. The profile access is described by an IOHANDLER.
See 10 handlers section for further details. This function allows to specify write access as
well

Parameters:
ContextID: Pointer to a user-defined context cargo.

lo: Pointer to a serialization object.
write: TRUE to grant write access, FALSE to open the IOHANDLER as read only

Returns:
A handle to an ICC profile object on success, NULL on error.

2.9

cmsBool cmsCloseProfile(cmsHPROFILE hProfile);

Closes a profile handle and frees any associated resource. Can return error when creating
disk profiles, as this function flushes the data to disk.

Parameters:
hProfile: Handle to a profile object.

Returns:
TRUE on success, FALSE on error

cmsBool cmsSaveProfileToFile(emsHPROFILE hProfile, const char* FileName);

Saves the contents of a profile to a given filename.

Parameters:
hProfile: Handle to a profile object

ICCProfile: File name w/ full path.

Returns:
TRUE on success, FALSE on error.

Profile access functions

2.0

cmsBool cmsSaveProfileToStream(cmsHPROFILE hProfile, FILE* Stream);

Saves the contents of a profile to a given stream.
Parameters:

hProfile: Handle to a profile object

Returns:
TRUE on success, FALSE on error.

2.9

cmsBool cmsSaveProfileToMem(cmsHPROFILE hProfile,
void *MemPtr, cmsUInt32Number* BytesNeeded);

Same as anterior, but for memory blocks. In this case, a NULL as MemPtr means to
calculate needed space only.

Parameters:
hProfile: Handle to a profile object.
MemPtr: Points to a block of contiguous memory with enough space to contain the
profile
BytesNeeded: points to a cmsUInt32Number, where the function will store profile’s
Size measured in bytes.

Returns:
TRUE on success, FALSE on error.

Profile access functions

2.9

cmsUInt32Number cmsSaveProfileTolOhandler(cmsHPROFILE hProfile,
cmsIOHANDLER® io);

Low-level save to IOHANDLER. It returns the number of bytes used to store the profile, or
zero on error. io may be NULL and in this case no data is written--only sizes are
calculated.

Parameters:
hProfile: Handle to a profile object

lo: Pointer to a serialization object.

Returns:
The number of bytes used to store the profile, or zero on error.

Predefined virtual profiles

Predefined virtual profiles

2.9

cmsHPROFILE cmsCreateProfilePlaceholder(cmsContext ContextlD);

Creates an empty profile object, ready to be populated by the programmer.

WARNING: The obtained profile without adding any information is not directly useable.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreateRGBProfile(const cmsCIExyY* WhitePoint,
const cmsCIExyYTRIPLE* Primaries,
cmsToneCurve® const TransferFunction[3]);

This function creates a display RGB profile based on White point, primaries and transfer
functions. It populates following tags; this conform a standard RGB Display Profile, and then
adds (As per addendum Il of ICC spec) chromaticity tag.

cmsSigProfileDescriptionTag
cmsSigMediaWhitePointTag
cmsSigRedColorantTag
cmsSigGreenColorantTag
cmsSigBlueColorantTag
cmsSigRedTRCTag
cmsSigGreenTRCTag
cmsSigBlueTRCTag
Chromatic adaptation Tag

0 | cmsSigChromaticityTag

2O NOO|RWIN|—

Parameters:
WhitePoint: The white point of the RGB device or space.

Primaries: The primaries in xyY of the device or space.
TransferFunction[]: 3 tone curves describing the device or space gamma.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.0

cmsHPROFILE cmsCreateRGBProfileTHR(cmsContext ContextID,
const cmsCIExyY* WhitePoint,
const cmsCIExyYTRIPLE* Primaries,
cmsToneCurve® const TransferFunction[3]);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

WhitePoint: The white point of the RGB device or space.
Primaries: The primaries in xyY of the device or space.
TransferFunction[]: 3 tone curves describing the device or space gamma.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreateGrayProfile(const cmsCIExyY* WhitePoint,
const cmsToneCurve® TransferFunction);

This function creates a gray profile based on White point and transfer function. It populates
following tags; this conform a standard gray display profile.

1 | cmsSigProfileDescriptionTag
2 | cmsSigMediaWhitePointTag
3 | cmsSigGrayTRCTag

Parameters:
WhitePoint: The white point of the gray device or space.

TransferFunction: tone curve describing the device or space gamma.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.0

cmsHPROFILE cmsCreateGrayProfileTHR(cmsContext ContextlD,
const cmsCIExyY* WhitePoint,
const cmsToneCurve* TransferFunction);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

WhitePoint: The white point of the gray device or space.
TransferFunction: tone curve describing the device or space gamma.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreatelinearizationDeviceLink(cmsColorSpaceSignature Space,
cmsToneCurve® const TransferFunctions|]);

This is a devicelink operating in the target colorspace with as many transfer functions as
components.

Parameters:

Space: any cmsColorSpaceSignature from Table 10

TransferFunction[]: tone curves describing the device or space linearization.
Returns:

A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsCreatelinearizationDeviceLink THR(cmsContext ContextlD,
cmsColorSpaceSignature ColorSpace,
cmsToneCurve® const TransferFunctions]]);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.
ColorSpace: any cmsColorSpaceSignature from Table 10
TransferFunction[]: tone curves describing the device or space linearization.
Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.0

cmsHPROFILE cmsCreatelnkLimitingDeviceLink(cmsColorSpaceSignature Space,
cmsFloat64Number Limit);

This is a devicelink operating in CMYK for ink-limiting.

Ink-limiting algorithm:

Sum=C+M+Y +K
If Sum > InkLimit

Ratio= 1 - (Sum - InkLimit) / (C + M +Y)

if Ratio <0

Ratio=0

endif

Else
Ratio=1

endif

C=Ratio*C
M = Ratio * M
Y = Ratio* Y
K: Does not change

Parameters:

Space: any cmsColorSpaceSignature from Table 10. Currently only

cmsSigCmykData is supported.

Limit: Amount of ink limiting in % (0..400%)

Returns:

A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.16

cmsHPROFILE cmsCreateDevicelLinkFromCubeFile (const char* cFileName);

Imports a 3D LUT file as a devicelink profile operating in the RGB color model. The file
format corresponds to .CUBE file format, defined by Adobe in document cube-lut-
specification-1.0.pdf

Some .cube files may contains negative numbers, LittleCMS can only deal with those
numbers on unbounded mode, so you need to use floating point transforms to get negative
numbers.

Parameters:
cFileName: The .CUBE file to import.

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsCreateDevicelLinkFromCubeFileTHR (cmsContext ContextlD,
const char* cFileName);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

cFileName: The .CUBE file to import.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.9

cmsHPROFILE cmsCreatelnkLimitingDeviceLink THR(cmsContext ContextID,
cmsColorSpaceSignature Space,
cmsFloat64Number Limit);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Space: any cmsColorSpaceSignature from Table 10. Currently only
cmsSigCmykData is supported.
Limit: Amount of ink limiting in % (0..400%)

Returns:
A handle to an ICC profile object on success, NULL on error.

2.9

cmsHPROFILE cmsCreateLab2Profile(const cmsCIExyY* WhitePoint);

Creates a Lab - Lab identity, marking it as v2 ICC profile. Adjustments for accomodating
PCS endoing shall be done by Little CMS when using this profile.

Parameters:
WhitePoint: Lab reference white. NULL for D50.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreateLab2ProfileTHR(cmsContext ContextlD,
const cmsCIExyY* WhitePoint);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

WhitePoint: Lab reference white. NULL for D50.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.0

cmsHPROFILE cmsCreatelLab4Profile(const cmsCIExyY* WhitePoint);

Creates a Lab > Lab identity, marking it as v4 ICC profile.

Parameters:
WhitePoint: Lab reference white. NULL for D50.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreatelLab4ProfileTHR(cmsContext ContextlD,
const cmsCIExyY* WhitePoint);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

WhitePoint: Lab reference white. NULL for D50.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreateXYZProfile(void);

Creates a XYZ - XYZ identity, marking it as v4 ICC profile. WhitePoint used in Absolute
colorimetric intent is D50.

Parameters:
None

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.0

cmsHPROFILE cmsCreateXYZProfileTHR(cmsContext ContextID);

Same as anterior, but allowing a ContextlD to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreate sRGBProfile(void);

Create an ICC virtual profile for sSRGB space. sRGB is a standard RGB color space
created cooperatively by HP and Microsoft in 1996 for use on monitors, printers, and the
Internet.

sRGB white point is D65.
xyY | 0.3127,0.3291, 1.0

Primaries are ITU-R BT.709-5 (xYY)

R | 0.6400, 0.3300, 1.0
G | 0.3000, 0.6000, 1.0
B | 0.1500, 0.0600, 1.0

SRGB transfer functions are defined by:

If R’sre,G’sreB, B'sres < 0.04045
R = R'sres/ 12.92

G = Gsraa/ 12.92
B = B'srae / 12.92

else if R’sRGB,G’sRGB, B’sres >= 0.04045

R = ((R'sres + 0.055) / 1.055)%
G = ((G'sros + 0.055) / 1.055)2*
B = ((Bsrce + 0.055) / 1.055)24

http://en.wikipedia.org/wiki/Rec._709

Predefined virtual profiles

Parameters:
None

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsCreate sRGBProfileTHR(cmsContext ContextID);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreateNULLProfile(void);

Creates a fake NULL profile. This profile returns 1 channel as always 0. Is useful only for
gamut checking tricks.

Parameters:
None

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsCreateNULLProfileTHR(cmsContext ContextID);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.0

cmsHPROFILE cmsCreateBCHSWabstractProfile(int nLUTPoints,
cmsFloat64Number Bright,
cmsFloat64Number Contrast,
cmsFloat64Number Hue,
cmsFloat64Number Saturation,
int TempSrc,
int TempDest);

Creates an abstract devicelink operating in Lab for Bright/Contrast/Hue/Saturation and
white point translation. White points are specified as temperatures °K

Parameters B,C,H,S are applied in the L*C*h space as follows:

LChOut.L = LChIn.L * bchsw ->Contrast + bchsw ->Brightness;
LChOut.C = LChIn.C + bchsw ->Saturation:;
LChOut.h = LChin.h + bchsw ->Hue;

e contrast should be close to 1.0, this is the L* slope.
e Brightness goes from -100 to 100, this is the L* offset
e Hue comes in degrees, and is the offset applied

Parameters:
nLUTPoints : Resulting color map resolution
Bright: Bright increment. May be negative
Contrast : Contrast increment. May be negative.
Hue : Hue displacement in degree.
Saturation: Saturation increment. May be negative
TempSrc: Source white point temperature
TempDest: Destination white point temperature.

Returns:
A handle to an ICC profile object on success, NULL on error.

Notes:
To prevent white point adjustment, set TempSrc = TempDest = 0

Predefined virtual profiles

2.0

cmsHPROFILE cmsCreateBCHSWabstractProfileTHR(cmsContext ContextlD,
int nLUTPoints,
cmsFloat64Number Bright,
cmsFloat64Number Contrast,
cmsFloat64Number Hue,
cmsFloat64Number Saturation,
int TempSrc,
int TempDest);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

nLUTPoints : Resulting colormap resolution

Bright: Bright increment. May be negative

Contrast : Contrast increment. May be negative.

Hue : Hue displacement in degree.

Saturation: Saturation increment. May be negative

TempSrc, TempDest: Source, Destination white point temperatures

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsTransform2DeviceLink(cmsHTRANSFORM hTransform,
cmsFloat64Number Version,
cmsUInt32Number dwFlags);

Generates a device-link profile from a given color transform. This profile can then be used
by any other function accepting profile handle. Depending on the specified version number,
the implementation of the devicelink may vary. Accepted versions are in range 1.0...4.4

Parameters:
hTransform: Handle to a color transform object.

Version: The target devicelink version number.
dwFlags: A combination of bit-field constants described in Table 42.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

cmsHPROFILE cmsCreate_OklLabProfile(cmsContext ctx)

Generates a profile for OkLab color space . The predefined type TYPE_OKLAB_DBL can
be used for this colorspace. The profile works in both directions.

See https://bottosson.github.io/posts/oklab/

WARNING: This profile cannot be saved it uses features not supported in the because the
ICC format , it only works as a virtual profile.

Parameters:
ContextID: Handle to user-defined context, or NULL for the global context

Returns:
A handle to an ICC profile object on success, NULL on error.

https://bottosson.github.io/posts/oklab/

Obtaining localized info from profiles

Obtaining localized info from profiles

In versions prior to 4.0, the ICC format defined a required tag 'desc' which stored ASCII,
Unicode, and Script Code versions of the profile description for display purposes. However,
this structure allowed the profile to be localized for one language only through Unicode or
Script Code. Profile vendors had to ship many localized versions to different countries. It
also created problems when a document with localized profiles embedded in it was shipped
to a system using a different language. With the adoption of V4 spec as basis, Little CMS
solves all those issues honoring a new tag type: ‘mluc’ and multi localized Unicode. There
is a full part of the API to deal with this stuff, but if you don’t care about the details and all
you want is to display the right string, Little CMS provides a simplified interface for that
purpose.

Note that ASCII is strictly 7 bits, so you need to use wide chars if you want to preserve the
information in the profile. The localization trick is done by using the lenguage and country
codes, which you are supposed to supply. Those are two or three ASCII letters. A list of
codes may be found here:

Language Code: http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

Country Codes: http://www.iso.ch/iso/en/prods-services/iso3166mal/index.html

In practice, “en” for “english” and “US” for “united states” are implemented in most profiles.
Itis Ok to set a language and a country even if the profile does not implement such specific
language and country. Little CMS will search for a proper match.

If you don’t care and want just to take the first string in the profile, you can use:

For the language:

cmsNolLanguage |

For the country:

cmsNoCountry |

This will force to get the very first string, without any searching. A note of warning on that:
you will get an string, but the language would be any, and probably that is not what you
want. It is better to specify a default for language, and let LittleCMS to choose any other
country (or language!) if what you ask for is not available.

typedef enum {
cmsinfoDescription =0,
cmslinfoManufacturer= 1,
cmsinfoModel =2,
cmsinfoCopyright =3
} cmsinfoType;

http://lcweb.loc.gov/standards/iso639-2/iso639jac.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html

Obtaining localized info from profiles

Reading the unicode variant on V2 profiles

Since 2.16, a special setting for the lenguage and country allows to access the unicode
variant on V2 profiles.

For the language:
\ cmsV2Unicode |

For the country:
\ cmsV2Unicode |

Many V2 profiles have this field empty or filled with bogus values. Previous versions of Little
CMS were ignoring it, but with this additional setting, correct V2 profiles with two variants
can be honored now. By default, the ASCII variant is returned on V2 profiles unless you
specify this special setting. If you decide to use it, check the result for empty strings and if
this is the case, repeat reading by using the normal path.

Obtaining localized info from profiles

2.0

cmsUInt32Number cmsGetProfilelnfo(cmsHPROFILE hProfile,
cmslinfoType Info,
const char LanguageCode[3],
const char CountryCode[3],
wchar_t* Buffer,
cmsUInt32Number BufferSize);

Gets several information strings from the profile, dealing with localization. Strings are
returned as wide chars.

Parameters:
hProfile: Handle to a profile object
Info: A selector of which info to return
Language Code: first name language code from ISO-639/2.
Country Code: first name region code from ISO-3166.
Buffer: pointer to a memory block to get the result. NULL to calculate size only
BufferSize: Amount of byes allocated in Buffer, or 0 to calculate size only.

Returns:
Number of required bytes to hold the result. 0 on error.

2.0

cmsUInt32Number cmsGetProfileInfoASClI(cmsHPROFILE hProfile,
cmslinfoType Info,
const char LanguageCode[3],
const char CountryCode[3],
char® Buffer,
cmsUInt32Number BufferSize);

Gets several information strings from the profile, dealing with localization. Strings are
returned as ASCII.

Parameters:
hProfile: Handle to a profile object
Info: A selector of which info to return
Language Code: first name language code from ISO-639/2.
Country Code: first name region code from ISO-3166.
Buffer: pointer to a memory block to get the result. NULL to calculate size only
BufferSize: Amount of byes allocated in Buffer, or 0 to calculate size only.

Returns:
Number of required bytes to hold the result. 0 on error.

Profile feature detection

Profile feature detection

2.9

cmsBool cmsDetectBlackPoint(emsCIEXYZ* BlackPoint,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags);

Estimate the black point of a given profile. Used by black point compensation algorithm.

Parameters:
BlackPoint: Pointer to cmsCIEXYZ object to receive the detected black point.
hProfile: Handle to a profile object
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.
dwFlags: reserved (unused). Set it to 0

Returns:
TRUE on success, FALSE on error

2.8

cmsBool cmsDetectDestinationBlackPoint(cmsCIEXYZ* BlackPoint,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags);

Estimate the black point of a given destination profile by using the Black point
compensation ICC algorithm.

Parameters:
BlackPoint: Pointer to cmsCIEXYZ object to receive the detected black point.
hProfile: Handle to a profile object
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.
dwFlags: reserved (unused). Set it to 0

Returns:
TRUE on success, FALSE on error

Profile feature detection

2.0

cmsFloat64Number cmsDetectTAC(cmsHPROFILE hProfile);

When several colors are printed on top of each other, there is a limit to the amount of ink
that can be put on paper. This maximum total dot percentage is referred to as either TIC
(Total Ink Coverage) or TAC (Total Area Coverage). This function does estimate total area
coverage for a given profile in %. Only works on output profiles. On RGB profiles, 400% is
returned. TAC is detected by subsampling Lab color space on 6x74x74 points.

Parameters:

hProfile: Handle to a profile object

Returns:
Estimated area coverage in % on success, 0 on error.

2.13

cmsFloat64Number cmsDetectRGBProfileGamma (cmsHPROFILE hProfile,
cmsFloat64Number thereshold);

Detect whatever a given ICC profile works in linear (gamma 1.0) space. Actually, doing that
"well" is quite hard, because each component may behave completely different. Since the
true point of this function is to detect suitable optimizations, | am imposing some
requirements that simplifies things: only RGB, and only profiles that can got in both
directions. The algorithm obtains Y from a synthetic gray R=G=B. Then a least squares
fitting algorithm is then used to estimate gamma. For gamma close to 1.0, RGB is linear.
On profiles not supported, -1 is returned.

Parameters:
hProfile: Handle to a profile object

threshold: The standard deviation above that gamma is returned.

Returns:
Estimated gamma of the RGB space on success, -1 on error.

Accessing profiler header

Accessing profiler header

2.9

cmsBool cmsGetHeaderCreationDateTime(cmsHPROFILE hProfile, struct tm *Dest);

Returns the date and time when profile was created. This is a field stored in profile header.

Parameters:
hProfile: Handle to a profile object

Dest: pointer to struct tm object to hold the result.

Returns:
TRUE on success, FALSE on error

2.9

cmsUInt32Number cmsGetHeaderFlags(cmsHPROFILE hProfile);

Get header flags of given ICC profile object. The profile flags field does contain flags to
indicate various hints for the CMM such as distributed processing and caching options. The
least-significant 16 bits are reserved for the ICC. Flags in bit positions 0 and 1 shall be used
as indicated in Table 7.

Position Field Field Contents
Length
(bits)

0 1 Embedded Profile (cmsEmbeddedProfileFalse if not embedded,
cmsEmbeddedProfileTrue if embedded in file)

1 1 Profile cannot be used independently from the embedded color data
(set to cmsUseWithEmbeddedDataOnly if true, cmsUseAnywhere if
false)

Table 7
Parameters:

hProfile: Handle to a profile object

Returns:
Flags field of profile header.

Accessing profiler header

2.0

void cmsSetHeaderFlags(cmsHPROFILE hProfile, cmsUInt32Number Flags);

Sets header flags of given ICC profile object. Valid flags are defined in Table 7.

Parameters:
hProfile: Handle to a profile object.

Flags: Flags field of profile header.

Returns:
None

2.0

cmsUInt32Number cmsGetHeaderManufacturer(cmsHPROFILE hProfile);

Returns the manufacturer signature as described in the header. This funcionality is widely
superseded by the manufaturer tag. Of use only in elder profiles.

Parameters:
hProfile: Handle to a profile object

Returns:
The profile manufacturer signature stored in the header.

void cmsSetHeaderManufacturer(cmsHPROFILE hProfile,
cmsUInt32Number manufacturer);

Sets the manufacturer signature in the header. This funcionality is widely superseded by
the manufaturer tag. Of use only in elder profiles.

Parameters:
hProfile: Handle to a profile object.

Manufacturer: The profile manufacturer signature to store in the header.

Returns:
None

Accessing profiler header

2.0

cmsUInt32Number cmsGetHeaderModel(cmsHPROFILE hProfile);

Returns the model signature as described in the header. This funcionality is widely
superseded by the model tag. Of use only in elder profiles.

Parameters:
hProfile: Handle to a profile object

Returns:
The profile model signature stored in the header.

2.9

void cmsSetHeaderModel(cmsHPROFILE hProfile, cmsUInt32Number model);

Sets the model signature in the profile header. This funcionality is widely superseded by
the model tag. Of use only in elder profiles.

Parameters:
hProfile: Handle to a profile object
model: The profile model signature to store in the header.

Returns:
None

Accessing profiler header

Device attributes
currently defined values correspond to the low 4 bytes of the 8 byte attribute quantity.

cmsReflective cmsTransparency

cmsGlossy cmsMatte
Table 8

2.9

void cmsGetHeaderAttributes(cmsHPROFILE hProfile , cmsUInt64Number” Flags);

Gets the attribute flags as described in Table 8.

Parameters:
hProfile: Handle to a profile object

Flags: a pointer to a cmsUInt64Number to receive the flags.

Returns:
None

void cmsSetHeaderAttributes(cmsHPROFILE hProfile, cmsUInt64Number Flags);

Sets the attribute flags in the profile header. Flags are enumerated in Table 8.

Parameters:
hProfile: Handle to a profile object

Flags: The flags to be set.

Returns:
None

Accessing profiler header

Profile classes

Device Class (cmsProfileClassSignature)
cmsSiglnputClass 0x73636E72 'scnr'
cmsSigDisplayClass 0x6D6E7472 'mntr'
cmsSigOutputClass 0x70727472 'prir'
cmsSigLinkClass 0x6C696E6B 'link'
cmsSigAbstractClass 0x61627374 'abst'
cmsSigColorSpaceClass 0x73706163 'spac'
cmsSigNamedColorClass 0x6e6d636¢ 'nmcl'
Table 9

2.9

cmsProfileClassSignature cmsGetDeviceClass(cmsHPROFILE hProfile);

Gets the device class signature from profile header.

Parameters:
hProfile: Handle to a profile object

Returns:
Device class of profile as described in Table 9

2.0

void cmsSetDeviceClass(cmsHPROFILE hProfile, cmsProfileClassSignature sig);

Sets the device class signature in profile header.

Parameters:
hProfile: Handle to a profile object
sig: Device class of profile as described in Table 9

Returns:
None

Accessing profiler header

Profile versioning

2.0

void cmsSetProfileVersion(cmsHPROFILE hProfile, cmsFloat64Number Version);

Sets the ICC version in profile header. The version is given to this function as a float n.m

Parameters:
hProfile: Handle to a profile object

Version: Profile version in readable floating point format.

Returns:
None

2.0

cmsFloat64Number cmsGetProfileVersion(cmsHPROFILE hProfile);

Returns the profile ICC version. The version is decoded to readable floating point format.
Parameters:

hProfile: Handle to a profile object

Returns:
The profile ICC version, in readable floating point format.

cmsUInt32Number cmsGetEncoded|CCversion(cmsHPROFILE hProfile);

Returns the profile ICC version in the same format as it is stored in the header.
Parameters:
hProfile: Handle to a profile object

Returns:
The encoded ICC profile version.

Accessing profiler header

2.0

void cmsSetEncoded|CCversion(cmsHPROFILE hProfile,
cmsUInt32Number Version);

Sets the ICC version in profile header, without any decoding.

Parameters:
hProfile: Handle to a profile object

Version: Profile version in the same format as it will be stored in profile header.

Returns:
None

Info on profile implementation

Info on profile implementation

2.9

cmsBool cmslsMatrixShaper(cmsHPROFILE hProfile);

Returns whatever a matrix-shaper is present in the profile. Note that a profile may hold
matrix-shaper and CLUT as well.

Parameters:

hProfile: Handle to a profile object

Returns:
TRUE if the profile holds a matrix-shaper, FALSE otherwise.

2.1

cmsBool cmslsCLUT(cmsHPROFILE hProfile,
cmsUInt32Number [ntent,
cmsUInt32Number UsedDirection);

Returns whatever a CLUT is present in the profile for the given intent and direction.

Parameters:

hProfile: Handle to a profile object

Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.

Direction: any of following values:

#define LCMS_USED_AS INPUT 0
#define LCMS_USED_AS_OUTPUT 1
#define LCMS_USED_AS_PROOF 2

Returns:
TRUE if a CLUT is present for given intent and direction, FALSE otherwise.

Color spaces

Color spaces

cmsColorSpaceSignature

cmsSigXYZData 0x58595A20 'XYZ'
cmsSiglLabData 0x4C616220 'Lab '
cmsSigLuvData 0x4C757620 'Luv'
cmsSigYCbCrData 0x59436272 'YCbr'
cmsSigYxyData 0x59787920 'Yxy '
cmsSigRgbData 0x52474220 'RGB'
cmsSigGrayData 0x47524159 'GRAY'
cmsSigHsvData 0x48535620 'HSV '
cmsSigHIsData 0x484C5320 'HLS '
cmsSigCmykData 0x434D594B 'CMYK'
cmsSigCmyData 0x434D5920 'CMY '
cmsSigMCH1Data 0x4D434831 'MCH1'
cmsSigMCH2Data 0x4D434832 'MCH2'
cmsSigMCH3Data 0x4D434833 'MCHS3'
cmsSigMCH4Data 0x4D434834 'MCH4'
cmsSigMCH5Data 0x4D434835 'MCH5'
cmsSigMCH6Data 0x4D434836 'MCH6'
cmsSigMCH7Data 0x4D434837 'MCHT7'
cmsSigMCH8Data 0x4D434838 'MCHS'
cmsSigMCH9Data 0x4D434839 'MCH9'
cmsSigMCHAData 0x4D43483A 'MCHA'
cmsSigMCHBData 0x4D43483B 'MCHB'
cmsSigMCHCData 0x4D43483C 'MCHC'
cmsSigMCHDData 0x4D43483D 'MCHD'
cmsSigMCHEData 0x4D43483E 'MCHE'
cmsSigMCHFData 0x4D43483F 'MCHF'
cmsSigNamedData 0x6e6d636¢ 'nmcl'

cmsSig1colorData

0x31434C52 "ICLR'

cmsSig2colorData

0x32434C52 '2CLR'

cmsSig3colorData

0x33434C52 '3CLR'

cmsSig4colorData

0x34434C52 'ACLR'

cmsSig5colorData

0x35434C52 '5CLR'

cmsSig6colorData

0x36434C52 '6CLR'

cmsSig7colorData

0x37434C52 "7CLR'

cmsSig8colorData

0x38434C52 '8CLR'

cmsSig9colorData

0x39434C52 'OCLR'

cmsSig10colorData

0x41434C52 'ACLR'

cmsSig11colorData

0x42434C52 'BCLR'

cmsSig12colorData

0x43434C52 'CCLR

cmsSig13colorData

0x44434C52 'DCLR

cmsSig14colorData 0x45434C52 'ECLR'
cmsSig15colorData 0x46434C52 'FCLR!
cmsSigLuvKData 0x4C75764B 'LuvK'

Table 10

Color spaces

2.0

cmsUInt32Number cmsChannelsOf(cmsColorSpaceSignature ColorSpace);

Returns channel count for a given color space.
Parameters:

ColorSpace: any cmsColorSpaceSignature from Table 10

Returns:
Number of channels, or 3 on error.

cmsColorSpaceSignature cmsGetPCS(cmsHPROFILE hProfile);

Gets the profile connection space used by the given profile, using the ICC convention.
Parameters:

hProfile: Handle to a profile object

Returns:
Obtained cmsColorSpaceSignature (Table 10).

void cmsSetPCS(cmsHPROFILE hProfile, cmsColorSpaceSignature pcs);

Sets the profile connection space signature in profile header, using ICC convention.

Parameters:
hProfile: Handle to a profile object
pcs: any cmsColorSpaceSignature from Table 10

Returns:
None

Color spaces

2.0

cmsColorSpaceSignature cmsGetColorSpace(cmsHPROFILE hProfile);

Gets the color space used by the given profile, using the ICC convention.

Parameters:
hProfile: Handle to a profile object

Returns:
Obtained cmsColorSpaceSignature (Table 10).

2.9

void cmsSetColorSpace(cmsHPROFILE hProfile, cmsColorSpaceSignature sig);

Sets the color space signature in profile header, using ICC convention.

Parameters:

hProfile: Handle to a profile object
sig: any cmsColorSpaceSignature from Table 10

Returns:
None

Color spaces

Containers in floating point format

cmsFloat64Number

cmsFloat64Number

cmsFloat64Number

Table 11

cmsFloat64Number

cmsFloat64Number

cmsFloat64Number

Table 12

cmsFloat64Number

|

cmsFloat64Number

cmsFloat64Number

Table 13

cmsFloat64Number

|

cmsFloat64Number

cmsFloat64Number

Table 14

cmsFloat64Number

|

cmsFloat64Number

cmsFloat64Number

Table 15

cmsCIEXYZ Red;
cmsCIEXYZ Green;
cmsCIEXYZ Blue;
Table 16
[cmsCIEExyYTRIPLE]
cmsCIExyY Red;
cmsCIExyY Green;
cmsCIExyY Blue;

Table 17

Colorspace conversions

Color spaces [N

D50 XYZ normalized to Y=1.0

cmsD50X 0.9642

cmsD50Y 1.0

cmsD50Z 0.8249
Table 18

V4 perceptual black

cmsPERCEPTUAL_BLACK_X | 0.00336

cmsPERCEPTUAL_BLACK_Y | 0.0034731

cmsPERCEPTUAL_BLACK_Z | 0.00287

Table 19

const cmsCIEXYZ* cmsD50 XYZ(void);
const cmsCIExyY* cmsD50_ xyY/(void);

Returns pointer to constant structures.

Parameters:
None

Returns:
Pointers to constant D50 white point in XYZ and xyY spaces.

void cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source);
void cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source);

Colorimetric space conversions.

Parameters:
Source, Dest: Source and destination values.

Returns:
None

Color spaces

2.0

void cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint,
cmsCIELab* Lab,
const cmsCIEXYZ* xyz);

void cmsLab2XYZ(const cmsCIEXYZ* WhitePoint,
cmsCIEXYZ" xyz,
const cmsCIELab* Lab);

Colorimetric space conversions. Setting WhitePoint to NULL forces D50 as white point.

Parameters:
Lab: Pointer to a cmsCIELab value as described in Table 13
xyz: Pointer to a cmsCIEXYZ value as described in Table 11

Returns:
None

2.0

void cmsLab2LCh(ecmsCIELCh*LCh, const cmsCIELab* Lab);
void cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh);

Colorimetric space conversions.

Parameters:
Lab: Pointer to a cmsCIELab value as described in Table 13

LCh: Pointer to a cmsCIELCh value as described in Table 14

Returns:
None

Color spaces

Encoding /Decoding on PCS

2.0

void cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wlLab[3]);

Decodes a Lab value, encoded on ICC v4 convention to a cmsCIELab value as described
in Table 13

Parameters:

Lab: Pointer to a cmsCIELab value as described in Table 13
wLab[] : Array of 3 cmsUInt16Number holding the encoded values.

Returns:
None

void cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wlLab[3]);

Decodes a Lab value, encoded on ICC v2 convention to a cmsCIELab value as described
in Table 13

Parameters:

Lab: Pointer to a cmsCIELab value as described in Table 13
wLab[] : Array of 3 cmsUInt16Number holding the encoded values.

Returns:
None

void cmsFloat2LabEncoded(cmsUInt16Number wlLab[3], const cmsCIELab* Lab);

Encodes a Lab value, from a cmsCIELab value as described in Table 13, to ICC v4
convention.

Parameters:
Lab: Pointer to a cmsCIELab value as described in Table 13

wLab[] : Array of 3 cmsUInt16Number to hold the encoded values.

Returns:
None

Color spaces

2.0

void cmsFloat2LabEncodedV2(cmsUInt16Number wlLab[3], const cmsCIELab* Lab);

Encodes a Lab value, from a cmsCIELab value as described in Table 13, to ICC v2
convention.

Parameters:
Lab: Pointer to a cmsCIELab value as described in Table 13

wLab[] : Array of 3 cmsUInt16Number to hold the encoded values.

Returns:
None

2.0

void cmsXYZEncoded2Float(cmsCIEXYZ* fxyz, const cmsUInt16Number XYZ[3]);

Decodes a XYZ value, encoded on ICC convention to a cmsCIEXYZ value as described in
Table 11

Parameters:

fxyz: Pointer to a cmsCIEXYZ value as described in Table 11
XYZ[] : Array of 3 cmsUInt16Number holding the encoded values.

Returns:
None

2.0

void cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* TXYZ);

Encodes a XYZ value, from a cmsCIELab value as described in Table 11, to ICC
convention.

Parameters:
XYZ[] : Array of 3 cmsUInt16Number to hold the encoded values.

fxyz: Pointer to a cmsCIEXYZ value as described in Table 11

Returns:
None

Accessing tags

Tag types

Those are the predefined tag types. You can add more types by using tag type plug-ins. See
the plug-in API reference for further details.

Accessing tags

Base type definitions (cmsTagTypeSignature)

cmsSigChromaticityType 0x6368726D 'chrm'
cmsSigcicpType 0x63696370, 'cicp'
cmsSigColorantOrderType 0x636C726F ‘clro'
cmsSigColorantTableType 0x636C7274 'clrt'
cmsSigCrdInfoType 0x63726469 'crdi'
cmsSigCurveType 0x63757276 'curv'
cmsSigDataType 0x64617461 'data’
cmsSigDateTimeType 0x6474696D 'dtim'
cmsSigDeviceSettingsType 0x64657673 'devs'
cmsSigLut16Type 0x6d667432 'mft2'
cmsSigLut8Type 0x6d667431 'mft1’
cmsSigLutAtoBType 0x6d414220 'mAB '
cmsSigLutBtoAType 0x6d424120 'mBA "

cmsSigMeasurementType

0x6D656173 'meas’

cmsSigMultiLocalizedUnicodeType

0x6D6C7563 'mluc'

cmsSigMultiProcessElementType

0x6D706574 'mpet’

cmsSigNamedColorType

0x6E636f6C 'ncol’

cmsSigNamedColor2Type

0Ox6E636C32 'ncl2'

cmsSigParametricCurveType

0x70617261 'para’

cmsSigProfileSequenceDescType

0x70736571 'pseq'

cmsSigProfileSequenceldType

0x70736964 'psid'

cmsSigResponseCurveSet16Type

0x72637332 'rcs2'

cmsSigS15Fixed16ArrayType

0x73663332 'sf32'

cmsSigScreeningType 0x7363726E 'scrn’
cmsSigSignatureType 0x73696720 'sig '
cmsSigTextType 0x74657874 'text’

cmsSigTextDescriptionType

0x64657363 'desc'

cmsSigU16Fixed16ArrayType

0x75663332 'uf32'

cmsSigUcrBgType

0x62666420 'bfd '

cmsSigUInt16ArrayType

0x75693136 'ui16'

cmsSigUInt32ArrayType

0x75693332 'ui32'

cmsSigUInt64ArrayType

0x75693634 'uic4’

cmsSigUInt8ArrayType

0x75693038 'ui08'

cmsSigViewingConditionsType

0x76696577 'view'

cmsSigXYZType

0x58595A20 'XYZ'

Table 20

Accessing tags

Tags

Those are the predefined tags. You can add more tags by using tag plug-ins. See the plug-
in API reference for further details. On the right there is the lcms type representation for
cmsReadTag and cmsWriteTag.

Base tag definitions (cmsTagSignature) Icms type
cmsSigAToB0Tag 0x41324230 'A2B0' cmsPipeline
cmsSigAToB1Tag 0x41324231 'A2B1' cmsPipeline
cmsSigAToB2Tag 0x41324232 'A2B2' cmsPipeline
cmsSigBlueColorantTag 0x6258595A 'bXYZ' cmsCIEXYZ
cmsSigBlueMatrixColumnTag 0x6258595A 'bXYZ' cmsCIEXYZ
cmsSigBlueTRCTag 0x62545243 'bTRC' cmsToneCurve
cmsSigBToAOTag 0x42324130 'B2A0' cmsPipeline
cmsSigBToA1Tag 0x42324131 'B2AT' cmsPipeline
cmsSigBToA2Tag 0x42324132 'B2A2' cmsPipeline
cmsSigCalibrationDateTimeTag 0x63616C74 'calt’ struct tm
cmsSigCharTargetTag 0x74617267 'targ' cmsMLU
cmsSigChromaticAdaptationTag 0x63686164 'chad’ cmsCIEXYZ [3]
cmsSigChromaticityTag 0x6368726D ‘chrm’ cmsCIExyYTRIPLE
cmsSigColorantOrderTag 0x636C726F 'clro' cmsUInt8Number [16]
cmsSigColorantTableTag 0x636C7274 ‘cirt’ cmsNAMEDCOLORLIST

cmsSigColorantTableOutTag

0x636C6F74 'clot'

cmsNAMEDCOLORLIST

cmsSigColorimetricintentimageStateTag

0x63696973 'ciis’

cmsSignature

cmsSigCopyrightTag 0x63707274 'cprt’ cmsMLU
cmsSigCrdInfoTag 0x63726469 'crdi' cmsNAMEDCOLORLIST
cmsSigDataTag 0x64617461 'data’ cmsICCData
cmsSigDateTimeTag 0x6474696D 'dtim’ struct tm
cmsSigDeviceMfgDescTag 0x646D6E64 'dmnd’ cmsMLU
cmsSigDeviceModelDescTag 0x646D6464 'dmdd' cmsMLU
cmsSigDeviceSettingsTag 0x64657673 'devs' Not supported*
cmsSigDToB0Tag 0x44324230 'D2B0' cmsPipeline
cmsSigDToB1Tag 0x44324231 'D2B1' cmsPipeline
cmsSigDToB2Tag 0x44324232 'D2B2' cmsPipeline
cmsSigDToB3Tag 0x44324233 'D2B3' cmsPipeline
cmsSigBToD0Tag 0x42324430 'B2D0' cmsPipeline
cmsSigBToD1Tag 0x42324431 'B2D1' cmsPipeline
cmsSigBToD2Tag 0x42324432 'B2D2' cmsPipeline
cmsSigBToD3Tag 0x42324433 'B2D3' cmsPipeline
cmsSigGamutTag 0x67616D74 ‘gamt’ cmsPipeline
cmsSigGrayTRCTag 0x6b545243 'kTRC' cmsToneCurve
cmsSigGreenColorantTag 0x6758595A 'gXYZ' cmsCIEXYZ
cmsSigGreenMatrixColumnTag 0x6758595A 'gXYZ' cmsCIEXYZ
cmsSigGreenTRCTag 0x67545243 'gTRC' cmsToneCurve
cmsSiglLuminanceTag 0x6C756d69 'lumi’ cmsCIEXYZ
cmsSigMeasurementTag 0x6D656173 'meas’ girpizln(;CMeasurementCon
cmsSigMediaBlackPointTag 0x626B7074 "bkpt' cmsCIEXYZ
cmsSigMediaWhitePointTag 0x77747074 ‘wipt' cmsCIEXYZ

Accessing tags I

cmsSigNamedColorTag

0x6E636f6C 'ncol'

Not supported*®

cmsSigNamedColor2Tag

0x6E636C32 'ncl2'

cmsNAMEDCOLORLIST

cmsSigOutputResponseTag

0x72657370 'resp’

Not supported*

cmsSigPerceptualRenderinglntentGamutTag

0x72696730 'rig0’

cmsSignature

cmsSigPreview0Tag 0x70726530 'pre0' cmsPipeline
cmsSigPreview1Tag 0x70726531 'pre’ cmsPipeline
cmsSigPreview2Tag 0x70726532 'pre2' cmsPipeline
cmsSigProfileDescriptionTag 0x64657363 'desc' cmsMLU
cmsSigProfileSequenceDescTag 0x70736571 'pseq’ cmsSEQ
cmsSigProfileSequenceldTag 0x70736964 ‘psid' cmsSEQ
cmsSigPs2CRD0Tag 0x70736430 'psd0' cmslCCData
cmsSigPs2CRD1Tag 0x70736431 'psd1" cmsICCData
cmsSigPs2CRD2Tag 0x70736432 'psd2' cms|CCData
cmsSigPs2CRD3Tag 0x70736433 'psd3' cmslCCData
cmsSigPs2CSATag 0x70733273 'ps2s’ cmsICCData
cmsSigPs2RenderingintentTag 0x70733269 'ps2i’ cmsICCData
cmsSigRedColorantTag 0x7258595A 'rXYZ' cmsCIEXYZ
cmsSigRedMatrixColumnTag 0x7258595A 'rXYZ' cmsCIEXYZ
cmsSigRedTRCTag 0x72545243 'rTRC' cmsToneCurve
cmsSigSaturationRenderinglntentGamutTag 0x72696732 'rig2' cmsSignature
cmsSigScreeningDescTag 0x73637264 'scrd' cmsMLU

cmsSigScreeningTag

0x7363726E 'scrn’

cmsScreening

cmsSigTechnologyTag 0x74656368 'tech'’ cmsSignature
cmsSigUcrBgTag 0x62666420 'bfd ' cmsUcrBg
cmsSigViewingCondDescTag 0x76756564 'vued' cmsMLU

cmsSigViewingConditionsTag

0x76696577 'view'

cmslCCViewingConditions

cmsSigMetaTag 0x6D657461 'meta’ cmsHANDLE (DICT)

cmsSigcicpTag 0x63696370 'cicp' cmsVideoSignalType

cmsSigArgyllArtsTag 0x61727473 'arts' stS1[g]Fixed16Number
rray

cmsSigMHC2Tag 0x4D484332 'MHC2' cmsMHC2Type

Table 21

‘cmsSigCrdinfoTag: This type contains the PostScript product name to which this profile
corresponds and the names of the companion CRDs. A single profile can generate multiple
CRDs. It is implemented as a MLU being the language code "PS" and then country varies
for each element:

o nm: PostScript product name

#0: Rendering intent 0 CRD name
#1: Rendering intent 1 CRD name
#2: Rendering intent 2 CRD name
#3: Rendering intent 3 CRD name

Accessing tags

There are several tags not supported, they are listed below with an explanation on why are
not supported.

Not supported Why

cmsSigOutputResponseTag | POSSIBLE PATENT ON THIS SUBJECT!

cmsSigNamedColorTag Deprecated

cmsSigDataTag Ancient, unused

cmsSigDeviceSettingsTag | Deprecated, useless

cmsInt32Number cmsGetTagCount(cmsHPROFILE hProfile);

Returns the number of tags present in a given profile.

Parameters:
hProfile: Handle to a profile object

Returns:
Number of tags on success, -1 on error.

cmsTagSignature cmsGetTagSignature(cmsHPROFILE hProfile,
cmsUInt32Number n);

Returns the signature of a tag located in n position being n a 0-based index: i.e., first tag is
indexed with n=0.

Parameters:
hProfile: Handle to a profile object
n: index to a tag position (0-based)

Returns:
The tag signature on success, 0 on error.

Accessing tags [N

2.0

cmsBool cmslsTag(ecmsHPROFILE hProfile, cmsTagSignature sig);

Returns TRUE if a tag with signature sig is found on the profile. Useful to check if a profile
contains a given tag.

Parameters:
hProfile: Handle to a profile object.
sig: Tag signature, as stated in Table 21

Returns:
TRUE if the tag is found, FALSE otherwise.

2.0

void® cmsReadTag(cmsHPROFILE hProfile, cmsTagSignature sig);

Reads an existing tag with signature sig, parses it and returns a pointer to an object owned
by the profile object holding a representation of tag contents.

Little CMS will return (if found) a pointer to a structure holding the tag. The obtained structure
is not the raw contents of the tag, but the result of parsing the tag. For example, reading a
cmsSigAToBO tag results as a Pipeline structure ready to be used by all the cmsPipeline
functions. The memory belongs to the profile and is set free on closing the profile. In this
way, there are no memory duplicates and you can safely re-use the same tag as many times
as you wish. Anything coming from cmsReadTag should be treated as const. Otherwise
you are modifying structures that are owned by the profile, when the profile is set free, it tries
to free those structures. If you have modified the internal pointers, it can get corrupted.

Parameters:
hProfile: Handle to a profile object.
sig: Tag signature, as stated in Table 21

Returns:
A pointer to a profile-owned object holding tag contents, or NULL if the signature is
not found. Type of object does vary. See Table 21 for a list of returned types.

Accessing tags IEEIN

2.0

cmsBool cmsWriteTag(cmsHPROFILE hProfile,
cmsTagSignature sig,
const void* data);

Writes an object to an ICC profile tag, doing all necessary serialization. The obtained tag
depends on ICC version number used when creating the profile.

Writing tags is almost the same as read them, you just specify a pointer to the structure and
the tag name and Little CMS will do all serialization for you. Process under the hood may be
very complex, if you realize v2 and v4 of the ICC spec are using different representations of
same structures.

Parameters:
hProfile: Handle to a profile object
sig: Tag signature, as stated in Table 21
data: A pointer to an object holding tag contents. Type of object does vary. See
Table 21 for a list of required types.

Returns:
TRUE on success, FALSE on error

cmsBool cmsLinkTag(cmsHPROFILE hProfile,
cmsTagSignature sig,
cmsTagSignature dest);

Creates a directory entry on tag sig that points to same location as tag dest. Using this
function you can collapse several tag entries to the same block in the profile. For example,
point perceptual, rel.col and saturation BtoAxx tags to same implementation.

Parameters:
hProfile: Handle to a profile object

sig: Signature of linking tag
dest: Signature of linked tag

Returns:
TRUE on success, FALSE on error

Accessing tags

2.1

cmsTagSignature cmsTaglLinkedTo(cmsHPROFILE hProfile, cmsTagSignature sig);

Returns the tag linked to sig, in the case two tags are sharing same resource, or NULL if the
tag is not linked to any other tag.

Parameters:
hProfile: Handle to a profile object

sig: Signature of linking tag

Returns:
Signature of linked tag, or NULL if no tag is linked

Accessing tags

Accessing tags as raw data

Those functions allows to read/write directly to the ICC profile any data, without checking
anything. As a rule, mixing Raw with cooked doesn't work, so writting a tag as raw and then
reading it as cooked without serializing does result into an error. If that is what you want,
you will need to dump the profile to memory or disk and then reopen it.

2.0

cmsInt32Number cmsReadRawTag(cmsHPROFILE hProfile,
cmsTagSignature sig,
void* Buffer, cmsUInt32Number BufferSize);

Similar to cmsReadTag, but different in two important aspects. 1%, the memory is not owned
by the profile, but by you, so you have to allocate the necessary amount of memory. To
know the size in advance, use NULL as buffer and 0 as buffer size. The function then returns
the number of needed bytes without writing them.

The second important point is, this is raw data. No processing is performed, so you can
effectively read wrong or broken profiles with this function. Obviously, it is up to you to
interpret all those bytes!

Parameters:
hProfile: Handle to a profile object

sig: Signature of tag to be read
Buffer: Points to a memory block to hold the result.
BufferSize: Size of memory buffer in bytes

Returns:
Number of bytes read.

2.0

cmsBool cmsWriteRawTag(cmsHPROFILE hProfile,
cmsTagSignature sig,
const void® data, cmsUInt32Number Size);

The RAW version does the same as cmsWriteTag but without any interpretation of the data.
Please note it is fair easy to deal with “cooked” structures, since there are primitives for
allocating, deleting and modifying data. For RAW data you are responsible of everything. If
you want to deal with a private tag, you may want to write a plug-in instead of messing up
with raw data.

Parameters:
hProfile: Handle to a profile object

sig: Signature of tag to be written
Buffer: Points to a memory block holding the data.
BufferSize: Size of data in bytes

Returns:
TRUE on success, FALSE on error

Profile structures

Profile structures

ICC profile internal base types. Strictly, shouldn't be declared in this header, but maybe
somebody wants to use this info for accessing profile header directly, so here it is. Data is

32-bit aligned.

cmslCCHeader

cmsUInt32Number size; Profile size in bytes
cmsSignature cmmid; CMM for this profile
cmsUInt32Number version; Format version number
cmsProfileClassSignature deviceClass; Type of profile
cmsColorSpaceSignature colorSpace; Color space of data
cmsColorSpaceSignature pcs; PCS, XYZ or Lab only
cmsDateTimeNumber date; Date it was created
cmsSignature magic; Identify ICC profile
cmsPlatformSignature platform; Primary Platform
cmsUInt32Number flags; Various bit settings
cmsSignature manufacturer; Device manufacturer
cmsUInt32Number model; Device model number
cmsUInt64Number attributes; Device attributes
cmsUInt32Number renderingintent; Rendering intent
cmsEncodedXYZNumber illuminant; Profile illuminant
cmsSignature creator; Profile creator
cmsProfilelD profilelD; Profile ID using MD5
cmsInt8Number reserved[28]; Reserved

Table 22

cmslICCData

cmsUInt32Number len;

cmsUInt32Number flag;

cmsUInt8Number

data[1];

Table 23

cmsDateTimeNumber (ICC date time)

cmsUInt16Number | year;
cmsUInt16Number | month;
cmsUInt16Number | day;
cmsUInt16Number | hours;
cmsUInt16Number | minutes;
cmsUInt16Number | seconds;

Table 24

cmsEncodedXYZNumber (ICC XYZ)
cmsS15Fixed16Number | X;

cmsS15Fixed16Number Y;

cmsS15Fixed16Number Z;

Table 25

Profile structures

cmslCCMeasurementConditions

cmsUInt32Number Observer; 0 = unknown, 1=CIE 1931, 2=CIE 1964
cmsCIEXYZ Backing; Value of backing

cmsUInt32Number | Geometry; O=unknown, 1=45/0, 0/45 2=0d, d/0
cmsFloat64Number | Flare; 0..1.0

cmsUInt32Number

llluminantType;

Table 26

cmslICCViewingConditions

cmsCIEXYZ

llluminantXYZ;

Not the same struct as CAMO02,

cmsCIEXYZ

SurroundXYZ;

This is for storing the tag

cmsUInt32Number

llluminantType;

viewing condition

Table 27

Platforms

Platforms(cmsPlatformSignature)

cmsSigMacintosh

0x4150504C 'APPL'

cmsSigMicrosoft

0x4D534654 'MSFT'

cmsSigSolaris

0x53554E57 'SUNW'

cmsSigSGl

0x53474920 'SGI'

cmsSigTaligent

0x54474E54 'TGNT'

cmsSigUnices

0x2A6E6978 "nix’

Table 28

Reference gamut

| cmsSigPerceptualReferenceMediumGamut | 0x70726d67 'prmg’

Table 29

Image State

For cmsSigColorimetricintentimageStateTag

cmsSigSceneColorimetryEstimates

0x73636F65 'scoe'

cmsSigSceneAppearanceEstimates

0x73617065 'sape'

cmsSigFocalPlaneColorimetryEstimates

0x66706365 'fpce'

cmsSigReflectionHardcopyOriginalColorimetry

0x72686F63 'rhoc'

cmsSigReflectionPrintOutputColorimetry

0x72706F63 'rpoc'

Table 30

Profile structures

Pipeline Stages (Multi processing elements)

Stage types (cmsStageSignature)

cmsSigCurveSetElemType 0x63767374 'cvst'

cmsSigMatrixElemType 0x6D617466 'matf'
cmsSigCLutElemType 0x636C7574 'clut'

cmsSigBAcsElemType 0x62414353 'bACS'
cmsSigEAcsElemType 0x65414353 'eACS'
Private extensions

cmsSigXYZ2LabElemType 0x6C327820 'I2x'

cmsSigLab2XYZElemType 0x78326C20 'x2I'

cmsSigNamedColorElemType 0x6E636C20 'ncl'

cmsSigLabV2toV4 0x32203420 '24'

cmsSigLabV4toV2 0x34203220 '42'

cmsSigldentityElemType 0x69646E20 'idn'

Table 31

Types of CurveElements

cmsSigFormulaCurveSeg 0x70617266 'parf'
cmsSigSampledCurveSeg 0x73616D66 'samf'
cmsSigSegmentedCurve 0x63757266 'curf'

Table 32

Used in ResponseCurveType

cmsSigStatusA | 0x53746141

'StaA’

Status A: ISO 5-3 densitometer response. This is the
accepted standard for reflection densitometers for
measuring photographic colour prints.

cmsSigStatusg | 0x53746145

'StaE’

Status E: ISO 5-3 densitometer response which is the
accepted standard in Europe for colour reflection
densitometers.

cmsSigStatusl | 0x53746149

‘Stal'

Status I: 1ISO 5-3 densitometer response commonly
referred to as narrow band or interference-type
response.

cmsSigStatusT | 0x53746154

'StaT'

Status T: ISO 5-3 wide band colour reflection
densitometer response which is the accepted standard in
the United States for colour reflection densitometers.

cmsSigStatusM | 0x5374614D

'StaM'

Status M: ISO 5-3 densitometer response for measuring
colour negatives.

cmsSigDN 0x444E2020

lDN)

DIN E: DIN 16536-2 densitometer response, with no
polarising filter.

cmsSigDNP 0x444E2050

‘DN P!

DIN E: DIN 16536-2 densitometer response, with
polarising filter.

cmsSigDNN 0x444E4E20

'DNN'’

DIN I: DIN 16536-2 narrow band densitometer response,
with no polarising filter.

cmsSigDNNP | Ox444E4ES50

'DNNP'

DIN I: DIN 16536-2 narrow band densitometer response,
with polarising filter.

Table 33

Technology enumeration for cmsTechnologySignature, used on header and profile

sequence description.

Technology tag (cmsTechnologySignature)

cmsSigDigitalCamera

0x6463616D 'dcam’

cmsSigFilmScanner

0x6673636E 'fscn'

cmsSigReflectiveScanner

0x7273636E 'rscn’

cmsSiglnkJetPrinter

0x696A6574 "jjet’

cmsSigThermalWaxPrinter

0x74776178 'twax'

cmsSigElectrophotographicPrinter

0x6570686F 'epho’

cmsSigElectrostaticPrinter

0x65737461 'esta’

cmsSigDyeSublimationPrinter

0x64737562 'dsub’

cmsSigPhotographicPaperPrinter

0x7270686F 'rpho’

cmsSigFilmWriter

0x6670726E 'fprn’

cmsSigVideoMonitor

0x7669646D 'vidm'

cmsSigVideoCamera

0x76696463 'vidc'

cmsSigProjectionTelevision

Ox706A7476 'pjtv'

cmsSigCRTDisplay 0x43525420 'CRT '

cmsSigPMDisplay 0x504D4420 'PMD '
cmsSigAMDisplay 0x414D4420 'AMD '
cmsSigPhotoCD 0x4B504344 'KPCD'

cmsSigPhotolmageSetter

0x696D6773 'imgs'

cmsSigGravure

0x67726176 'grav'

cmsSigOffsetLithography 0x6F666673 'offs'
cmsSigSilkscreen 0x73696C6B 'silk'
cmsSigFlexography 0x666C6578 'flex'

cmsSigMotionPictureFilmScanner

0x6D706673 'mpfs'

cmsSigMotionPictureFilmRecorder

0x6D706672 'mpfr'

cmsSigDigitalMotionPictureCamera

0x646D7063 'dmpc'

cmsSigDigitalCinemaProjector

0x64636A70 'dcpj'

Table 34

Formatters

Formatters

Formatters are used to describe how bitmap buffers are organized. Format of pixel is
defined by a cmsUInt32Number, using bit fields as follows:

MAOTTTTTUYFP XS EEE CCCC BBB

Premultiplied alpha (only works when extra samples is 1)

Floating point. With this flag we can differentiate, for example, 16 bits as float or as
int

Optimized previous optimization already returns the final 8-bit value (internal use
only)

Pixeltype (see table below)

Flavor 0=MinlsBlack(Chocolate) 1=MinlsWhite(Vanilla)

Planar? 0=Chunky, 1=Planar

swap 16 bps endianess?

Do swap? ie, BGR, KYMC

Extra samples

Channels (Samples per pixel)

Bytes per sample

Swap first channel - changes ABGR to BGRA and KCMY to CMYK

Table 35

o »=

<|m|o|m|n|x|o|m|H

Macros to build formatters

#define PREMUL_SH(m) ((m) << 23)
#define FLOAT_SH(a) ((a) << 22)
#define OPTIMIZED_SH(s) ((s) << 21)
#define COLORSPACE_SH(s) ((s) << 16)
#define SWAPFIRST_SH(s) ((s) << 14)

#define FLAVOR_SH(s) ((s) << 13)
#define PLANAR_SH(p) ((p) << 12)
#define ENDIAN16_SH(e) ((e) << 11)
#define DOSWAP_SH(e) ((e) << 10)
#define EXTRA_SH(e) ((e) << 7)
#define CHANNELS_SH(c) ((c) << 3)
#define BYTES_SH(b) (b)

Macros to extract information from formatters

#define T_PREMUL(m) (((m)>>23)&1)
#define T_FLOAT(a) ((a)>>22)&1)
#define T_OPTIMIZED(o) (((0)>>21)&1)

#define T_COLORSPACE(s) (((s)>>16)&31)
#define T_SWAPFIRST(s) (((s)>>14)&1)

#define T_FLAVOR(s) (((s)>>13)&1)
#define T_PLANAR(p) (((p)>>12)&1)
#define T_ENDIAN16(e) (((e)>>11)&1)
#define T_DOSWAP(e) (((e)>>10)&1)
#define T_EXTRA(e) (((e)>>7)&7)

#define T_CHANNELS(c) (((c)>>3)&15)

#define T_BYTES(b) ((b)&7)

Color spaces in Little CMS notation

Formatters

Used in formatters as a double check of color space. Each color space has an implicit

range.
Pixel types
PT_ANY 0 Don't check colorspace
*reserved” 1 Reseved for future ampliations (bilevel)
*reserved” 2 Reserved for future ampliations (palette)
PT_GRAY 3 Gray scale
PT_RGB 4 Red Green Blue
PT_CMY 5 Cyan Magenta Yellow
PT CMYK 6 Cyan Magenta Yellow blackK
PT_YCbCr 7 Y Cb Cr
PT_YUV 8 Lu'V
PT_XYZ 9 CIE XYZ
PT Lab 10 | CIEL*a*b
PT_YUVK 11 |LuVv'K
PT_HSV 12 |HSV
PT_HLS 13 |HLS
PT _Yxy 14 | Yxy
PT _MCH1 15 | 1 unspecified channel(s)
PT _MCH2 16 | 2 unspecified channel(s)
PT MCH3 17 | 3 unspecified channel(s)
PT MCH4 18 | 4 unspecified channel(s)
PT _MCH5 19 | 5 unspecified channel(s)
PT _MCH®6 20 | 6 unspecified channel(s)
PT_MCH7 21 | 7 unspecified channel(s)
PT MCHS8 22 | 8 unspecified channel(s)
PT _MCH9 23 | 9 unspecified channel(s)
PT MCH10 | 24 | 10 unspecified channel(s)
PT MCH11 | 25 | 11 unspecified channel(s)
PT MCH12 | 26 | 12 unspecified channel(s)
PT MCH13 | 27 | 13 unspecified channel(s)
PT _MCH14 | 28 | 14 unspecified channel(s)
PT MCH15 | 29 | 15 unspecified channel(s)
PT LabV2 30 | Identical to PT_Lab, but using the V2 old encoding

Table 36

Formatters

Translate color space from/to Little CMS notation to ICC

With those functions you can convert ICC color space enumeration
(cmsColorSpaceSignature, Table 10) to the Little CMS integers used in formatters (Table
36) .

2.9

cmsColorSpaceSignature _cms|CCcolorSpace(int OurNotation);

Converts from Little CMS color space notation (Table 36) to ICC color space notation
(Table 10).

Parameters:
OurNotation: any value from Table 36

Returns:
Corresponding cmsColorSpaceSignature (Table 10) or -1 on error.

int _cmsLCMScolorSpace(cmsColorSpaceSignature ProfileSpace);

Converts from ICC color space notation (Table 10) to Little CMS color space notation
(Table 36).

Parameters:
ProfileSpace: any cmsColorSpaceSignature from Table 10

Returns:
Corresponding Little CMS value (Table 36) or -1 on error.

Formatters [N

Predefined formatters
Already defined in Iems2.h, each formatter identifies a particular buffer organization. More
formatters can be defined by using the macros listed in lcms2.h.

The macro names are built by using following convention:

e “TYPE_” literal

e Color Space

o Alifalpha

e Bits per component

¢ Modifiers (one or more)
o PLANAR,

REV (reverse)

O O 0O O O O

Examples

SE (swap endian),

PREMUL (premultiplied alpha)
HALF_FLT for 16-bit floats
FLT for 32-bit floats

DBL for 64-bit doubles

TYPE_GRAY_8

Grayscale 8 bits

TYPE_GRAY_8 REV

Grayscale 8 bits, reversed

TYPE_GRAY_16

Grayscale 16 bits

TYPE_GRAY_16_REV

Grayscale 16 bits, reversed

TYPE_GRAY_16_SE

Grayscale 16 bits, swapped-endian

TYPE_GRAYA_8

Grayscale + alpha 8 bits

TYPE_GRAYA_8 PREMUL

Grayscale with premultiplied alpha

TYPE_GRAYA_16

Grayscale + alpha 16 bits

TYPE_GRAYA _16_SE

Grayscale + alpha 16 bits, swapped endian

TYPE_GRAYA 8 PLANAR

Grayscale 8 bits, single plane

TYPE_GRAYA_16_PLANAR

Grayscale 16 bits, single plane

TYPE_RGB 8 RGB 8 bits

TYPE _RGB_8 PLANAR RGB 8 bits, stored as contiguous planes
TYPE_BGR 8 BGR 8 bits

TYPE BGR 8 PLANAR BGR 8 bits, stored as contiguous planes
TYPE_RGB_16 BGR 16 bits

TYPE_RGB_16_PLANAR

RGB 16 bits, stored as contiguous planes

TYPE_RGB_16_SE

RGB 16 bits, swapped endian

TYPE_BGR_16

BGR 16 bits

TYPE_BGR_16_PLANAR

BGR 16 bits, stored as contiguous planes

TYPE_BGR_16_SE

BGR 16 bits, with swapped endinaness

TYPE_RGBA_8

RGB 8 bits plus an Alpha channel

TYPE_RGBA_8_ PLANAR

RGBA 8 bits, stored as contiguous planes

TYPE_RGBA_16

RGB 16 bits plus an Alpha channel

TYPE_RGBA_16_PLANAR

RGBA 16 bits, stored as contiguous planes

TYPE_RGBA _16_SE

RGBA 16 bits, with swapped endinaness

Formatters

TYPE _ARGB 8 An alpha channel plus RGB in 8 bits

TYPE_ARGB_8 PLANAR

TYPE_ARGB_16 An alpha channel plus RGB in 16 bits

TYPE ABGR 8 An alpha channel plus BGR in 8 bits

TYPE ABGR 8 PLANAR An alpha channel plus BGR in seprate 8 bit planes

TYPE_ABGR_16 An alpha channel plus BGR in 16 bits

TYPE_ABGR_16_PLANAR An alpha channel plus BGR in separate 16 bit
planes

TYPE_ABGR_16_SE

TYPE_BGRA 8

TYPE_BGRA_8 PLANAR

TYPE_BGRA 16

TYPE_BGRA_16_SE

TYPE_CMY_8

TYPE_CMY_8_PLANAR

TYPE_CMY_16

TYPE_CMY_16_PLANAR

TYPE_CMY_16_SE

TYPE_CMYK_8

TYPE_CMYKA_8

TYPE_CMYK_8_REV

TYPE_YUVK 8

TYPE_CMYK_8_ PLANAR

TYPE_CMYK_16

TYPE_CMYK_16_REV

TYPE_YUVK_16

TYPE_CMYK_16_PLANAR

TYPE_CMYK_16_SE

TYPE_KYMC_8

TYPE_KYMC_16

TYPE_KYMC_16_SE

TYPE_KCMY 8

TYPE_KCMY_8 REV

TYPE_KCMY_16

TYPE_KCMY_16_REV

TYPE_KCMY_16_SE

TYPE_CMYK5 8

TYPE_CMYKS5_16

TYPE_CMYKS5_16_SE

TYPE_KYMC5_8

TYPE_KYMCS5_16

TYPE_KYMCS5_16_SE

TYPE_CMYKcm_8

TYPE_CMYKcm_8 PLANAR

TYPE_CMYKcm_16

TYPE_CMYKcm_16_PLANAR

TYPE_CMYKcm_16_SE

TYPE_CMYK7_8

TYPE_CMYK7_16

Formatters

TYPE_CMYK7_16_SE

TYPE_KYMC7_8

TYPE_KYMC7_16

TYPE_KYMC7_16_SE

TYPE_CMYKS8_8

TYPE_CMYK8_16

TYPE_CMYK8_16_SE

TYPE_KYMC8_8

TYPE_KYMCB8_16

TYPE_KYMC8_16_SE

TYPE_CMYK9_8

TYPE_CMYK9_16

TYPE_CMYK9_16_SE

TYPE_KYMC9_8

TYPE_KYMC9_16

TYPE_KYMC9 16 _SE

TYPE_CMYK10_8

TYPE_CMYK10_16

TYPE_CMYK10_16_SE

TYPE_KYMC10_8

TYPE_KYMC10_16

TYPE_KYMC10_16_SE

TYPE_CMYK11_8

TYPE_CMYK11_16

TYPE_CMYK11_16_SE

TYPE_KYMC11_8

TYPE_KYMC11_16

TYPE_KYMC11_16_SE

TYPE_CMYK12_8

TYPE_CMYK12_16

TYPE_CMYK12_16_SE

TYPE_KYMC12_8

TYPE_KYMC12_16

TYPE_KYMC12_16_SE

TYPE _XYZ 16

TYPE_Lab_8

TYPE AlLab 8

TYPE_Lab_16

TYPE_Yxy 16

TYPE_YCbCr_8

TYPE_YCbCr_8 PLANAR

TYPE YCbCr 16

TYPE_YCbCr_16_PLANAR

TYPE_YCbCr_16_SE

TYPE_YUV_8

TYPE_YUV_8 PLANAR

TYPE_YUV_16

TYPE_YUV_16_PLANAR

TYPE_YUV_16_SE

Formatters

TYPE_HLS_8

TYPE_HLS_8 PLANAR

TYPE_HLS 16

TYPE_HLS_16_PLANAR

TYPE_HLS_16_SE

TYPE_HSV 8

TYPE_HSV_8 PLANAR

TYPE_HSV_16

TYPE_HSV_16_PLANAR

TYPE_HSV_16_SE

Floating point

TYPE_XYZ FLT

TYPE Lab_FLT

TYPE_GRAY_FLT

TYPE_RGB_FLT

TYPE_CMYK_FLT

TYPE_XYZ DBL

TYPE_Lab_DBL

TYPE_GRAY_DBL

TYPE_RGB_DBL

TYPE_CMYK_DBL

TYPE_LabV2_8

TYPE_ALabV2 8

TYPE_LabV2_16

TYPE_OKLAB_DBL

Takes directly the floating-point structs

TYPE_XYZ_FLT

TYPE Lab_FLT

TYPE_GRAY_FLT

TYPE_RGB_FLT

TYPE_CMYK_FLT

TYPE_XYZ DBL

TYPE_Lab_DBL

TYPE_GRAY_DBL

TYPE_RGB_DBL

TYPE_CMYK_DBL

TYPE_XYZA_FLT

TYPE_LabA_FLT

TYPE_RGBA_FLT

Table 37

Formatters

Alpha channel

The alpha channel is a color component that represents the degree of transparency (or
opacity) of a color. It is used to determine how a pixel is rendered when blended with
another. when an image is overlaid onto another image, the alpha value of the source color
is used to determine the resulting color. If the alpha value is opaque, the source color
overwrites the destination color; if transparent, the source color is invisible, allowing the
background color to show through. If the value is in between, the resulting color has a
varying degree of transparency/opacity, which creates a translucent effect.

Aover B AinB AoutB A atop B A xor B
0 S g ! 2B ERRC
paque = ~l - ,)
AandB /J : . /, L /, : /’ /’

P)
transparent) N 1) R 1)
Aand B | ’ I _i/ Py | _{/ g
Conceptual :[Gh
sub-pixel
overlay
Ell

There are two common representations that are available: unassociated alpha and
premultiplied alpha. With unassociated alpha, the RGB components represent the color of
the object or pixel, disregarding its opacity. With premultiplied alpha, the RGB components
represent the emission of the object or pixel, and the alpha represents the occlusion.

An obvious advantage of this is that, in certain situations, it can save a multiplication
However, the most significant advantages of using premultiplied alpha are for correctness
and simplicity rather than performance: premultiplied alpha allows correct filtering and
blending. In addition, premultiplied alpha allows regions of regular alpha blending and
regions with additive blending mode to be encoded within the same image. Fires and flames,
glows, flares, and other such phenomena can only be represented using premultiplied alpha.

Formatters

Premultiplication can reduce the available relative precision in the RGB values when using
integer or fixed-point representation for the color components, which may cause a noticeable
loss of quality if the color information is later brightened or if the alpha channel is removed.
In practice, this is not usually noticeable because during typical composition operations, the
influence of the low-precision color information in low-alpha areas on the final output image
is correspondingly reduced. This loss of precision also makes premultiplied images easier
to compress using certain compression schemes, as they do not record the color variations
hidden inside transparent regions, and can allocate fewer bits to encode low-alpha areas.

Little CMS can deal with both, unassociated and premultiplied alpha. When you create a
color transform across formats holding alpha channels, the color engine by default does just
nothing. It skips the alpha channels so you are free to initialize the result with opaque or
transparent alpha. This is also to keep compatibility with old versions of Little CMS.

Otherwise, you may want to just copy the alpha channel assuming it will be faster to perform
color management and alpha handling at same time. There is flag that you have to specify
if wish so: cmsFLAGS_COPY_ALPHA.

Please note there are situations when this copy of the alpha channel is not trivial, take for
example a color transform from 8 bits TYPE_RGBA_8 to a double floating point
TYPE_ABGR_DBL. The color engine will copy the alpha channel but also will convert from
the 0..255 range to 0..1.0 of double format. Another example is on images with more than
one alpha channel.

Premultiplied alpha may also be handled by the color engine. For input formats an optimized
fixed-point math is applied to recover the components. Color management is then applied
on the obtained pixels. For output, it is necessary to use cmsFLAGS_COPY_ALPHA flag.
Output premultiplied alpha needs input alpha, otherwise no operation is performed and
output alpha channel is ignored.

See Icms2.h for predefined formatters handling premultiplied alpha.

The ICC PCS EIIINNNNNN

The ICC PCS

In order to understand how the relative colorimetric intent works, we should first understand
one of the key concepts of ICC color management. That is the profile connection space,
known as the PCS.

The PCS is just a convention. An abstraction on how profiles exchange information. A lingua
franca used by the profiles to talk with each other. Your images are not likely to be converted
to this color space. In fact, in most CMMs, the PCS is not directly accessible. In this way,
an average user can effectively ignore the PCS, as it should not make any difference. But
for a profile or CMM implementer, understanding how the PCS is defined and works is very
important. I've seen many times profiles operating wrongly just because the creator
misunderstood some basics of the PCS.

In general, an ICC profile implements conversions between the device it is intended for and
the PCS. This may include both directions, from the device to the PCS and from the PCS to
the device. The color space of the device may be RGB or CMYK depending on the actual
device, while the PCS operates on device-independent colorimetric spaces.

ICC profiles may be used to model many different types of devices, but all share the same
connection space. The PCS is based on XYZ or Lab, determined for a specific observer (the
CIE standard 1931 colorimetric observer), relative to a specific illuminant (D50) and
measured with a specific geometry (0°/45° or 45°/0°) for reflecting media. That is what the
ICC spec says. But there is some subtlety in those words.

Why 1931 standard observer? This experimentally derived standard observer provides a
very good representation of the human visual system color matching capabilities. Unlike
device dependent color spaces, if two colors have the same CIE colorimetry they will match
if viewed under the conditions for which the CIE colorimetry was defined. Because the
imagery is typically produced for a wide variety of viewing environments, it is necessary to
go beyond simple application of the CIE system.

The PCS definition has evolved with revisions of the ICC specification. The latest revision,
4.3, contains a very accurate description of how to interpret the PCS. Previous specifications
were not so clear, and unfortunately that was a source of misunderstanding. Let’s review
the ICC v2 PCS, as a starting point.

The ICC PCS

ICC v2 PCS

The original v2 PCS was modeled as an IDEAL REFLECTION PRINT. As such, it had a
specific media white and received light from a given illuminant.

Here is a representation of the v2 PCS

lluminant (D50)

PCS ."5

ﬁ Observer

We have an observer, an illuminant and a reflection print. The exact meaning of those
elements depends of the device being modeled. It is quite intuitive in a printer profile that
the reflection print is just the media being printed. But some other cases are not so clear.

For the v2 PCS the ideal reflection print medium was a perfect diffuser, so the task of the
profile was among other things, to map from the paper used in real world to that perfect
media.

The refection print modeled by the PCS had a theoretical infinite dynamic range and gamut.
So, the task of the profile was to map whatever color was represented in the PCS, no matter
how hyper-saturated or self-fluorescent, to the real media. That is a rather difficult task if
one wants to preserve things like fidelity, gradients, smoothness and detail.

The ICC PCS

ICC v4 PCS

The latest ICC v4 specification keeps those concepts, although it expands the PCS
definition, and makes this virtual refection print more proper to real world media. While the
PCS for the perceptual rendering intent is still assumed to be that of a reference reflection
print, the dynamic range is limited and clearly defined, and the PCS for the colorimetric
rendering intents is no longer assumed to be the colorimetry based on any specific media,
but simply the colorimetry of the media as measured.

In theory, the dynamic range of the PCS for colorimetric transforms is infinite. In perceptual,
dynamic range is limited both to perceptual black, as v4 perceptual PCS has a nonzero black
point. Last revisions of the spec will include a reference medium gamut, which is going to
greatly improve the overall quality of profiles. That is because in v4, a perceptual intent
should map from source device gamut to the reference medium gamut and then back to the
gamut of destination device. Using a realistic, well-specified gamut in the PCS prevents
huge movements on re-rendering.

Another important difference between perceptual and relative colorimetric colorimetry in the
PCS is, for the perceptual intent, standard PCS viewing conditions are specified. That is
because the perceptual intent transform tries to produce colorimetry for a pleasing
appearance on the PCS reference print, while relative colorimetric intent transform
characterizes the actual device/medium colors in the PCS. The actual viewing conditions
used should be provided in the profile viewing conditions tag, but for relative colorimetric,
only media white point scaling and chromatic adaptation are performed. In transforms for
the colorimetric intents, the range of valid PCS values is unrelated to the reference media
white and black points.

It may seem that perceptual and relative colorimetric are using two different PCS, but that’s
not really true. The PCS is the same, but with the perceptual intent the PCS colorimetry must
be optimally color rendered for the reference medium. In relative colorimetric the PCS
colorimetry can be used for any media, so long as the measured data is correctly
represented.

Media normalization: demystifying the so called “Wrong von Kries” _

Media normalization: demystifying the so called “Wrong von
Kries”

The media being modeled may exhibit some chromaticity. That is, for example, in printer
profiles, not all papers are equally white.

When reproducing colors, it may be very desirable to “discount” the chromaticity of the
media. We want white mapped to white. Else, we would face problems like the “scum dot”,
that is, small dispersed dots in the reproduction due to printer halftone.

So, there is a “cooking” to be applied to our data before obtaining the final PCS
colorimetry: the media normalization. Its main purpose is to maximize dynamic range and
discount media chromaticity. This is called media-relative colorimetry.

Here is the involved math. You got the media white measured in XYZ as (Xw, Yw, Zw),
you got your measurements as XYZ, so for obtaining the PCS values:

Xpcs Xbso/ Xw 0 0 X
Ypes | = 0 Ypso/ Yw 0 1Y
Zpcs 0 0 Zpsol Zw | | Z

In other words, the discounting of media chromaticity is performed using XYZ scaling.

Those trained in traditional colorimetry usually have a negative reaction when they hear of
XYZ scaling used to perform adaptation. We should note that the goal of media
normalization is just match whites and provide more dynamic range. A secondary goal is
to be simple enough to fully recover absolute colorimetry. And this is very easy, indeed.
Just use this simple formula in the reverse direction and you get back the original values.
So this transform is easily invertible.

Effective media normalization will happen only on printer profiles, as self-luminous devices
are going to use their white point as both the assumed adapted white point and the media
white point. No normalization is needed in such case as the media white is already D50.

Media normalization: demystifying the so called “Wrong von Kries” _

Other tables

llluminant types

cmsILLUMINANT TYPE UNKNOWN 0x0000000
cmsILLUMINANT TYPE D50 0x0000001
cmsILLUMINANT TYPE D65 0x0000002
cmsILLUMINANT TYPE D93 0x0000003
cmsILLUMINANT TYPE F2 0x0000004
cmsILLUMINANT TYPE D55 0x0000005
cmsILLUMINANT TYPE A 0x0000006
cmsILLUMINANT TYPE E 0x0000007
cmsILLUMINANT TYPE F8 0x0000008
Table 38

cmsUcrBg

cmsToneCurve* Ucr;

cmsToneCurve* Bg;

cmsMLU* Desc;

Table 39

Media normalization: demystifying the so called “Wrong von Kries”

Microsoft MHC2 tag

This is a private tag used by Microsoft to describe GPU hardware pipelines for displays.
Little CMS supports read/write on this tag since 2.16. Note that creating a profile with that
info is a suitable way to access GPU on windows platforms. Windows 10, version 2004
(20H1) and later.

See https://learn.microsoft.com/en-us/windows/win32/wcs/display-calibration-mhc

typedef struct {

cmsUInt32Number CurveEntries;
cmsFloat64Number* RedCurve;
cmsFloat64Number* GreenCurve;
cmsFloat64Number* BlueCurve;

cmsFloat64Number MinLuminance; [l ST.2086 min luminance in nits
cmsFloat64Number PeakLuminance; /[ST.2086 peak luminance in nits

cmsFloat64Number XYZ2XYZmatrix[3][4];

} cmsMHC2Type;

https://learn.microsoft.com/en-us/windows/win32/wcs/display-calibration-mhc

Intents

Intents

ICC Intents

INTENT_PERCEPTUAL

INTENT_RELATIVE_COLORIMETRIC

INTENT_SATURATION

WIN | = |O

INTENT_ABSOLUTE_COLORIMETRIC

Table 40

Non-ICC intents

INTENT_PRESERVE_K_ONLY_PERCEPTUAL 10
INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC | 11
INTENT_PRESERVE_K_ONLY_SATURATION 12
INTENT_PRESERVE_K_PLANE_PERCEPTUAL 13
INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC | 14
INTENT_PRESERVE_K_PLANE_SATURATION 15

Table 41

2.9

cmsUInt32Number cmsGetSupportedintents(cmsUInt32Number nMax,
cmsUInt32Number* Codes,
char** Descriptions);

Fills a table with id-numbers and descriptions for all supported intents. Little CMS plug-in
architecture allows to implement user-defined intents; use this function to get info about

such extended functionality. Call with NULL as parameters to get the intent count

Parameters:
nMax: Max array elements to fill.

Codes [] : Pointer to user-allocated array of cmsUInt32Number to hold the intent id-

numbers.

Descriptions []: Pointer to a user allocated array of char* to hold the intent names.

Returns:
Supported intents count.

Intents

2.6

cmsUInt32Number cmsGetSupportedintentsTHR(cmsContext ContextlD,
cmsUInt32Number nMax,
cmsUInt32Number* Codes,
char** Descriptions);

Fills a table with id-numbers and descriptions for all supported intents. Little CMS plug-in
architecture allows to implement user-defined intents; use this function to get info about
such extended functionality. Call with NULL as parameters to get the intent count

Parameters:
ContextID: Handle to user-defined context, or NULL for the global context

nMax: Max array elements to fill.

Codes [] : Pointer to user-allocated array of cmsUInt32Number to hold the intent id-
numbers.

Descriptions []: Pointer to a user allocated array of char* to hold the intent names.

Returns:
Supported intent count.

2.0

cmsUInt32Number cmsGetHeaderRenderingIntent(cmsHPROFILE hProfile);

Gets the profile header rendering intent. From the ICC spec: “The rendering intent field shall
specify the rendering intent which should be used (or, in the case of a Devicelink profile,
was used) when this profile is (was) combined with another profile. In a sequence of more
than two profiles, it applies to the combination of this profile and the next profile in the
sequence and not to the entire sequence. Typically, the user or application will set the
rendering intent dynamically at runtime or embedding time. Therefore, this flag may not have
any meaning until the profile is used in some context, e.g. in a Devicelink or an embedded
source profile.”

Parameters:
hProfile: Handle to a profile object

Returns:
A cmsUInt32Number holding the intent code, as described in Intents section.

Intents

2.0
void cmsSetHeaderRenderinglntent(cmsHPROFILE hProfile,
cmsUInt32Number Renderinglntent);
Sets the profile header rendering intent. See the discussion above.
Parameters:
hProfile: Handle to a profile object
Renderingintent: A cmsUInt32Number holding the intent code, as described in
Intents section.
Returns:
None
2.1

cmsBool cmslsintentSupported(cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number UsedDirection);

Returns TRUE if the requested intent is implemented in the given direction. Little CMS has
a fallback strategy that allows to specify any rendering intent when creating the transform,
but the intent really being used may be another if the requested intent is not implemented.

Parameters:

hProfile: Handle to a profile object

Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.

UsedDirection: any of those constants:

#define LCMS_USED_AS INPUT 0
#define LCMS_USED_AS_OUTPUT 1
#define LCMS_USED_AS_PROOF 2

Returns:

TRUE if the intent is implemented, FALSE otherwise.

Flags

Flags

To command the whole process. Some or none of this values can be joined via the “or” |
operator.

cmsFLAGS NOCACHE 0x0040 // Inhibit 1-pixel cache
cmsFLAGS NOOPTIMIZE 0x0100 // Inhibit optimizations
cmsFLAGS NULLTRANSFORM 0x0200 // Don't transform anyway
Proofing flags
cmsFLAGS _GAMUTCHECK 0x1000 // Out of Gamut alarm
cmsFLAGS SOFTPROOFING 0x4000 // Do softproofing
Misc

0x2000

cmsFLAGS_BLACKPOINTCOMPENSATION
cmsFLAGS_NOWHITEONWHITEFIXUP 0x0004 // Don't fix scum dot

cmsFLAGS_HIGHRESPRECALC 0x0400 // Use more memory to give
// better accurancy.
cmsFLAGS LOWRESPRECALC 0x0800 // Use less memory to

/I minimize used resouces

For devicelink creation

cmsFLAGS 8BITS DEVICELINK 0x0008 // Create 8 bits devicelinks
cmsFLAGS GUESSDEVICECLASS 0x0020 // Guess device class

/[(for transform2devicelink)
cmsFLAGS KEEP_SEQUENCE 0x0080 // Keep profile sequence for

/! devicelink creation

Specific to a particular optimizations

cmsFLAGS FORCE_CLUT 0x0002 /[Force CLUT optimization
cmsFLAGS CLUT _POST _ LINEARIZATION | 0x0001 // create postlinearization

/[tables if possible
cmsFLAGS CLUT_PRE_LINEARIZATION 0x0010 // create prelinearization

/[tables if possible

Unbounded mode control
cmsFLAGS_NONEGATIVES 0x8000 // Prevent negative numbers
// in floating point transforms

Fine-tune control over number of gridpoints

cmsFLAGS GRIDPOINTS(n) | (((n) & OXFF) << 16)

CRD special

cmsFLAGS NODEFAULTRESOURCEDEF | 0x01000000

Alpha channel

cmsFLAGS COPY_ALPHA 0x04000000 // Alpha channels are
// copied to destination

Table 42

Color transforms [JEN

Color transforms

2.9

cmsHTRANSFORM cmsCreateTransform(cmsHPROFILE Input,
cmsUInt32Number InputFormat,
cmsHPROFILE Output,
cmsUInt32Number OutputFormat,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags);

Creates a color transform for translating bitmaps.

Parameters:
Input: Handle to a profile object capable to work in input direction
InputFormat: A bit-field format specifier as described in Formatters section.
Output: Handle to a profile object capable to work in output direction
OutputFormat: A bit-field format specifier as described in Formatters section.
Intent: A cmsUInt32Number holding the intent code, as described in Intents.
dwFlags: A combination of bit-field constants described in Table 42.

Returns:
A handle to a transform object on success, NULL on error.

2.0

cmsHTRANSFORM cmsCreateTransformTHR(cmsContext ContextlD,
cmsHPROFILE Input,
cmsUInt32Number InputFormat,
cmsHPROFILE Output,
cmsUInt32Number OutputFormat,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Input: Handle to a profile object capable to work in input direction
Output: Handle to a profile object capable to work in output direction
InputFormat: A bit-field format specifier as described in Formatters section.
OutputFormat: A bit-field format specifier as described in Formatters section.
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.
dwFlags: A combination of bit-field constants described in Table 42.

Returns:
A handle to a transform object on success, NULL on error.

Color transforms

2.0

void cmsDeleteTransform(cmsHTRANSFORM hTransform);

Closes a transform handle and frees any associated memory. This function does NOT free
the profiles used to create the transform.

Parameters:
hTransform: Handle to a color transform object.

Returns:
None

2.0

void cmsDoTransform(cmsHTRANSFORM hTransform,
const void * InputBuffer,
void * OutputBuffer,
cmsUInt32Number Size);

This function translates bitmaps according of parameters setup when creating the color
transform.

Parameters:
hTransform: Handle to a color transform object.
InputBuffer: A pointer to the input bitmap
OutputBuffer: A pointer to the output bitmap.
Size: the number of PIXELS to be transformed.

Returns:
None

Notes:
This function is re-entrant. It never fails and it never send error logs.

You can re-use same transform handle in different threads calling this
function.

Color transforms [EEN

2.4 DEPRECATED

void cmsDoTransformStride(cmsHTRANSFORM hTransform,
const void * InputBuffer,
void * OutputBuffer,
cmsUInt32Number Size, cmsUInt32Number Stride);

Deprecated. DO NOT USE. Use cmsDoTransformLineStride instead.

This function translates bitmaps according of parameters setup when creating the color
transform. On planar-organized buffers, the parameter stride specifies the separation
between planes, which may be different of the number of pixels to transform. The main
application of this function is when several threads are transforming pixels from different
zones of same planar buffer. Otherwise it is identical to cmDoTransform

Parameters:
hTransform: Handle to a color transform object.
InputBuffer: A pointer to the input bitmap
OutputBuffer: A pointer to the output bitmap.
Size: the number of PIXELS to be transformed.
Stride: Plane separation on planar formats

Returns:
None

Color transforms [JECHN

2.8

void cmsDoTransformLineStride(cmsHTRANSFORM Transform,
const void* InputBuffer,
void* OutputBuffer,
cmsUInt32Number PixelsPerLine,
cmsUInt32Number LineCount,
cmsUInt32Number BytesPerLineln,
cmsUInt32Number BytesPerLineOut,
cmsUInt32Number BytesPerPlaneln,
cmsUInt32Number BytesPerPlaneOut);

This function translates bitmaps with complex organization. Each bitmap may contain
several lines, and every may have padding. The distance from one line to the next one is
BytesPerLine{In/Out}. In planar formats, each line may hold several planes, each plane may
have padding. Padding of lines and planes should be same across all bitmap. l.e. all lines
in same bitmap have to be padded in same way. This function may be more efficient that
repeated calls to cmsDoTransform(), especially when customized plug-ins are being used.

Parameters:
hTransform: Handle to a color transform object.
InputBuffer: A pointer to the input bitmap
OutputBuffer: A pointer to the output bitmap.
PixelsPerLine: The number of pixels for line, which is same on input and in output.
LineCount: The number of lines, which is same on input and output
BytesPerLine{ln,Out}: The distance in bytes from one line to the next one.
BytesPerPlaneln{In,Out}: The distance in bytes from one plane to the next one
inside a line. Only applies in planar formats.

Returns:
None

Notes:

¢ This function is quite efficient, and is used by some plug-ins to give a big
speedup. If you can load whole image to memory and then call this function
over it, it will be much faster than any other approach.

e BytesPerPlaneln{In,Out} is ignored if the formats used are not planar. Please note
1-plane planar is indistinguishable from 1-component chunky, so BytesPerPlane is
ignored as well in this case.

e If the image does not have any gaps between the pixels and lines BytesPerLine{}
are equal to the pixel's size * PixelsPerLine.

o To specify padding between pixels, use T_EXTRA() and EXTRA_SH() to specify
extra channels.

¢ This function is re-entrant. It never fails and it never send error logs.

e You can re-use same transform handle in different threads calling this
function.

Color transforms [ylele)

To compute the pixel channel size, you could use T_BYTES macro for integer formats. If
you want to include double formats as well, use this small code:

cmsUInt32Number PixelChannelSize(cmsUInt32Number Format)

{
cmsUInt32Number fmt_bytes = T_BYTES(Format);

/I For double, the T_BYTES field is zero
if (fmt_bytes == 0)
return sizeof(cmsUInt64Number);

/I Otherwise, it is already correct for all formats
return fmt_bytes;

Pixel size is then the number of channels, plus the extra channels times the channel size

PixelSize = (T_CHANNELS(Format) + T_EXTRA(Format)) * PixelChannelSize(Format)

Color transforms [kl

Proofing transforms

A proofing transform does emulate the colors that would appear as the image were rendered
on a specific device. That is, for example, with a proofing transform | can see how will look
a photo of my little daughter if rendered on my HP printer. Since most printer profiles does
include some sort of gamut-remapping, it is likely colors will not look as the original. Using
a proofing transform, it can be done by using the appropriate function. Note that this is an
important feature for final users, it is worth of all color-management stuff if the final media
is not cheap.

2.0

cmsHTRANSFORM cmsCreateProofingTransform(cmsHPROFILE Input,
cmsUInt32Number InputFormat,
cmsHPROFILE Output,
cmsUInt32Number OutputFormat,
cmsHPROFILE Proofing,
cmsUInt32Number Intent,
cmsUInt32Number ProofingIntent,
cmsUInt32Number dwFlags);

Same as cmsCreateTransform(), but including soft-proofing. The obtained transform
emulates the device described by the "Proofing" profile. Useful to preview final result without
rendering to the physical medium. To enable proofing and gamut check you need to include
following flags:

cmsFLAGS_GAMUTCHECK: Color out of gamut are flagged to a fixed color
defined by the function cmsSetAlarmCodes

cmsFLAGS_SOFTPROOFING: does emulate the Proofing device.

Parameters:
Input: Handle to a profile object capable to work in input direction
Output: Handle to a profile object capable to work in output direction
InputFormat: A bit-field format specifier as described in Formatters section.
OutputFormat: A bit-field format specifier as described in Formatters section.
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.
Proofingintent: A cmsUInt32Number holding the intent code, as described in
Intents section.
dwFlags: A combination of bit-field constants described in Table 42.

Returns:
A handle to a transform object on success, NULL on error.

Color transforms [yl

2.0

cmsHTRANSFORM cmsCreateProofingTransformTHR(cmsContext ContextID,
cmsHPROFILE Input,
cmsUInt32Number InputFormat,
cmsHPROFILE Output,
cmsUInt32Number OutputFormat,
cmsHPROFILE Proofing,
cmsUInt32Number Intent,
cmsUInt32Number ProofingIntent,
cmsUInt32Number dwFlags);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Input: Handle to a profile object capable to work in input direction
Output: Handle to a profile object capable to work in output direction
InputFormat: A bit-field format specifier as described in Formatters section.
OutputFormat: A bit-field format specifier as described in Formatters section.
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.
Proofingintent: A cmsUInt32Number holding the intent code, as described in
Intents section.
dwFlags: A combination of bit-field constants described in Table 42.

Returns:
A handle to a transform object on success, NULL on error.

2.0

void cmsSetAlarmCodes(cmsUInt16Number AlarmCodes[cmsMAXCHANNELS]);

Sets the global codes used to mark out-out-gamut on Proofing transforms. Values are
meant to be encoded in 16 bits.

Parameters:
AlarmCodes: Array [16] of codes. ALL 16 VALUES MUST BE SPECIFIED, set to

zero unused channels.

Returns:
None

Color transforms

2.0

void cmsGetAlarmCodes(cmsUInt16Number AlarmCodes[cmsMAXCHANNELS]);

Gets the current global codes used to mark out-out-gamut on Proofing transforms. Values
are meant to be encoded in 16 bits.

Parameters:

AlarmCodes: Array [16] of codes. ALL 16 VALUES WILL BE OVERWRITTEN.

Returns:
None

.4

void cmsSetAlarmCodesTHR(cmsContext ContextID,
const cmsUInt16Number AlarmCodes[cmsMAXCHANNELS]);

Sets the codes used to mark out-out-gamut on Proofing transforms for a given context.
Values are meant to be encoded in 16 bits.

Parameters:
ContextID: Handle to user-defined context, or NULL for the global alarm codes

AlarmCodes: Array [16] of codes. ALL 16 VALUES MUST BE SPECIFIED, set to
zero unused channels.

Returns:
None

[2.6]

void cmsGetAlarmCodesTHR(cmsContext ContextlD,
cmsUInt16Number AlarmCodes[cmsMAXCHANNELS]);

Gets the current codes used to mark out-out-gamut on Proofing transforms for the given
context. Values are meant to be encoded in 16 bits.

Parameters:
ContextID: Handle to user-defined context, or NULL for the global context

AlarmCodes: Array [16] of codes. ALL 16 VALUES WILL BE OVERWRITTEN.

Returns: *None*

103

Color transforms

2.0

cmsFloat64Number cmsSetAdaptationState(cmsFloat64Number d);

Sets adaptation state for absolute colorimetric intent, on all but
cmsCreateExtendedTransform. Little CMS can handle incomplete adaptation states.

Parameters:
d: Degree on adaptation 0=Not adapted, 1=Complete adaptation, in-

between=Partial adaptation. Use negative values to return the global state without
changing it.

Returns:
Previous global adaptation state.

2.6

cmsFloat64Number cmsSetAdaptationState THR(cmsContext ContextID,
cmsFloat64Number d);

Sets adaptation state for absolute colorimetric intent in the given context. Adaptation state
applies on all but cmsCreateExtendedTransformTHR(). Little CMS can handle incomplete
adaptation states.

Parameters:
ContextID: Handle to user-defined context, or NULL for the global context

d: Degree on adaptation 0=Not adapted, 1=Complete adaptation, in-
between=Partial adaptation. Use negative values to return the global state without
changing it.

Returns:
Previous global adaptation state.

104

Color transforms

Multiprofile transforms

User passes in an array of handles to open profiles. The returned color transform do
"smelt" all profiles in a single devicelink. Color spaces must be paired with the exception of
Lab/XYZ, which can be interchanged.

2.9

cmsHTRANSFORM cmsCreateMultiprofile Transform(cmsHPROFILE hProfiles[],
cmsUInt32Number nProfiles,
cmsUInt32Number InputFormat,
cmsUInt32Number OutputFormat,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags);

Parameters:
hProfiles[] : Array of handles to open profile objects.
nProfiles: Number of profiles in the array.
InputFormat: A bit-field format specifier as described in Formatters section.
OutputFormat: A bit-field format specifier as described in Formatters section.
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.
dwFlags: A combination of bit-field constants described in Table 42.

Returns:
A handle to a transform object on success, NULL on error.

2.0

cmsHTRANSFORM cmsCreateMultiprofile TransformTHR(cmsContext ContextID,
cmsHPROFILE hProfiles]],
cmsUInt32Number nProfiles,
cmsUInt32Number InputFormat,
cmsUInt32Number OutputFormat,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.
hProfiles[] : Array of handles to open profile objects.
nProfiles: Number of profiles in the array.
InputFormat: A bit-field format specifier as described in Formatters section.
OutputFormat: A bit-field format specifier as described in Formatters section.
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.

105

Color transforms

dwFlags: A combination of bit-field constants described in Table 42.

Returns:
A handle to a transform object on success, NULL on error.

2.9

cmsHTRANSFORM cmsCreateExtendedTransform(cmsContext ContextlD,
cmsUInt32Number nProfiles, cmsHPROFILE hProfiles(],
cmsBool BPCJ],
cmsUInt32Number Intents|],
cmsFloat64Number AdaptationStates]],
cmsHPROFILE hGamutProfile,
cmsUInt32Number nGamutPCSposition,
cmsUInt32Number InputFormat,
cmsUInt32Number OutputFormat,
cmsUInt32Number dwFlags);

Extended form of multiprofile color transform creation, exposing all parameters for each
profile in the chain. All other transform cration functions are wrappers to this call.

Parameters:
ContextID: Pointer to a user-defined context cargo.

hProfiles[] : Array of handles to open profile objects.

nProfiles: Number of profiles in the array.

BPC [] : Array of black point compensation states

hGamutProfile: Handle to a profile holding gamut information for gamut check. Only
used if cmsFLAGS _GAMUTCHECK specified. Set to NULL for no gamut check.
nGamutPCSPosition: Position in the chain of Lab/XYZ PCS to check against gamut
profile Only used if cmsFLAGS_GAMUTCHECK specified.

InputFormat: A bit-field format specifier as described in Formatters section.
OutputFormat: A bit-field format specifier as described in Formatters section.

Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.

dwFlags: A combination of bit-field constants described in Table 42.

Returns:
A handle to a transform object on success, NULL on error.

106

Dynamically changing the input/output formats [l

Dynamically changing the input/output formats

Not all transforms can be changed, cmsChangeBuffersFormat only works on transforms
created originally with at least 16 bits of precision.

2.2

cmsUInt32Number cmsGetTransformIinputFormat(cmsHTRANSFORM hTransform);

Returns the input format associated with a given transform.

Parameters:
hTransform: Handle to a color transform object.

Returns:
The input format associated with the given transform or 0 if NULL parameter

2.2

cmsUInt32Number cmsGetTransformOutputFormat(cmsHTRANSFORM hTransform);

Returns the output format associated with a given transform.

Parameters:
hTransform: Handle to a color transform object.

Returns:
The output format associated with the given transform or 0 if NULL parameter

Dynamically changing the input/output formats [leL]

2.1

cmsBool cmsChangeBuffersFormat(cmsHTRANSFORM hTransform,
cmsUInt32Number InputFormat,
cmsUInt32Number OutputFormat);

This function does change the encoding of buffers in a yet-existing transform. Not all
transforms can be changed, cmsChangeBuffersFormat only works on transforms created
originally with at least 16 bits of precision. This function is provided for backwards
compatibility and should be avoided whenever possible, as it prevents transform
optimization.

Parameters:
Transform: Handle to a color transform object.
InputFormat: A bit-field format specifier as described in Formatters section.
OutputFormat: A bit-field format specifier as described in Formatters section.

Returns:
TRUE on success FALSE on error.

PostScript generation

PostScript generation

When dealing with PostScript, instead of creating a transform, it is sometimes desirable to
delegate the color management to PostScript interpreter. Little CMS does provide functions
to translate input and output profiles into Color Space Arrays (CSA) and Color Rendering
Dictionaries (CRD).

o CRD are equivalent to output (printer) profiles. Can be loaded into printer at startup
and can be stored as resources.

e (CSA are equivalent to input and workspace profiles, and are intended to be
included in the document definition.

Since the length of the resultant PostScript code is unknown in advance, you can call the
functions with len=0 and Buffer=NULL to get the length. After that, you need to allocate
enough memory to contain the whole block.

Devicelink profiles are supported, as long as input color space matches Lab/XYZ for CSA
or output color space matches Lab/XYZ for CRD.

WARNING: Precision of PostScript is limited to 8 bits per sample. If you can choose
between normal transforms and CSA/CRD, normal transforms will give more accuracy.

2.0

cmsUInt32Number cmsGetPostScriptColorResource(cmsContext ContextlD,
cmsPSResourceType Type,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags,
cmsIOHANDLER* io);

Little CMS 2 unified method to create postscript color resources. Serialization is performed
by the given iohandler object.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Type: Either cmsPS_RESOURCE_CSA or cmsPS_RESOURCE_CRD
hProfile: Handle to a profile object
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.
dwFlags: A combination of bit-field constants described in Table 42.

lohandler: Pointer to a serialization object.

Returns:
The resource size in bytes on success, 0 en error.

PostScript generation

2.0

cmsUInt32Number cmsGetPostScriptCSA(cmsContext ContextID,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags,
void* Buffer, cmsUInt32Number dwBufferLen);

A wrapper on cmsGetPostScriptColorResource to simplify CSA generation.

Parameters:

ContextID: Pointer to a user-defined context cargo.

hProfile: Handle to a profile object

Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.

dwFlags: A combination of bit-field constants described in Table 42.

Buffer: Pointer to a user-allocated memory block or NULL. If specified, It should be
big enough to hold the generated resource.
dwBufferLen: Length of Buffer in bytes.

Returns:
The resource size in bytes on success, 0 en error.

cmsUInt32Number cmsGetPostScriptCRD(cmsContext ContextID,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags,
void* Buffer, cmsUInt32Number dwBufferLen);

A wrapper on cmsGetPostScriptColorResource to simplify CRD generation.

Parameters:

ContextID: Pointer to a user-defined context cargo.

hProfile: Handle to a profile object

Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.

dwFlags: A combination of bit-field constants described in Table 42.

Buffer: Pointer to a user-allocated memory block or NULL. If specified, It should be

big enough to hold the generated resource.

dwBufferLen: Length of Buffer in bytes.

Returns:
The resource size in bytes on success, 0 en error.

110

A E metrics

A E metrics

You don't have to spend too long in the color management world before you come across
the term Delta-E. As with many things color, it seems simple to understand at first, yet the
closer you look, the more elusive it gets. Delta-E (dE) is a single number that represents the
'distance' between two colors. The idea is that a dE of 1.0 is the smallest color difference
the human eye can see. So any dE less than 1.0 is imperceptible and it stands to reason
that any dE greater than 1.0 is noticeable. Unfortunately it's not that simple. Some color
differences greater than 1 are perfectly acceptable, maybe even unnoticeable. Also, the
same dE color difference between two yellows and two blues may not look like the same
difference to the eye and there are other places where it can fall down. It's perfectly
understandable that we would want to have a system to show errors. After all, we've spent
the money on the instruments; shouldn't we get numbers from them? Delta-E numbers can
be used for:

¢ how far off is a print or proof from the original

¢ how much has a device drifted

e how effective is a particular profile for printing or proofing
e removes subjectivity (as much as possible)

These functions does compute the difference between two Lab colors, using several
difference spaces.

2.9

cmsFloat64Number cmsDeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2);

The L*a*b* color space was devised in 1976 and, at the same time delta-E 1976 (dE76)
came into being. If you can imagine attaching a string to a color point in 3D Lab space, dE76
describes the sphere that is described by all the possible directions you could pull the string.
If you hear people speak of just plain 'delta-E' they are probably referring to dE76. It is also
known as dE-Lab and dE-ab. One problem with dE76 is that Lab itself is not 'perceptually
uniform' as its creators had intended. So different amounts of visual color shift in different
color areas of Lab might have the same dE76 number. Conversely, the same amount of
color shift might result in different dE76 values. Another issue is that the eye is most sensitive
to hue differences, then chroma and finally lightness and dE76 does not take this into
account.

Parameters:
Lab1: Pointer to first cnsCIELab value as described in Table 13
Lab2: Pointer to second cmsCIELab value as described in Table 13
Returns:
The dE76 metric value.

111

A E metrics

2.0

cmsFloat64Number cmsCMCdeltaE(const cmsCIELab* Lab1,
const cmsCIELab* Lab2,
cmsFloat64Number |, cmsFloat64Number c);

In 1984 the CMC (Colour Measurement Committee of the Society of Dyes and Colourists of
Great Britain) developed and adopted an equation based on LCH numbers. Intended for the
textiles industry, CMC I:c allows the setting of lightness () and chroma (c) factors. As the
eye is more sensitive to chroma, the default ratio for I:c is 2:1 allowing for 2x the difference
in lightness than chroma (numbers). There is also a ‘commercial factor' (cf) which allows an
overall varying of the size of the tolerance region according to accuracy requirements. A
cf=1.0 means that a delta-E CMC value <1.0 is acceptable.

CMC I.c is designed to be used with D65 and the CIE Supplementary Observer. Commonly-
used values for I:c are 2:1 for acceptability and 1:1 for the threshold of imperceptibility.

Parameters:
Lab1: Pointer to first cmsCIELab value as described in Table 13
Lab2: Pointer to second cmsCIELab value as described in Table 13

Returns:
The dE CMC metric value.

2.0

cmsFloat64Number cmsBFDdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab?2);

BFD delta E metric.

Parameters:
Lab1: Pointer to first cmsCIELab value as described in Table 13

Lab2: Pointer to second cmsCIELab value as described in Table 13

Returns:
The dE BFD metric value.

112

A E metrics

2.0

cmsFloat64Number cmsCIE94DeltaE(const cmsCIELab* Lab1,
const cmsCIELab* Lab2);

A technical committee of the CIE (TC1-29) published an equation in 1995 called CIE94. The
equation is similar to CMC but the weighting functions are largely based on RIT/DuPont
tolerance data derived from automotive paint experiments where sample surfaces are
factor (cf_)_ but these tend to be preset in software and are not often exposed for the user (as
it is the case in Little CMS).

Parameters:
Lab1: Pointer to first cmsCIELab value as described in Table 13
Lab2: Pointer to second cmsCIELab value as described in Table 13

Returns:
The CIE94 dE metric value.

cmsFloat64Number cmsCIE2000DeltaE(const cmsCIELab* Lab1,
const cmsCIELab* Lab2,
cmsFloat64Number K,
cmsFloat64Number Kc,
cmsFloat64Number Kh);

Delta-E 2000 is the first major revision of the dE94 equation. Unlike dE94, which assumes
that L* correctly reflects the perceived differences in lightness, dE2000 varies the weighting
of L* depending on where in the lightness range the color falls. dE2000 is still under
consideration and does not seem to be widely supported in graphics arts applications.

Parameters:
Lab1: Pointer to first cmsCIELab value as described in Table 13
Lab2: Pointer to second cmsCIELab value as described in Table 13

Returns:
The CIE2000 dE metric value.

113

Temperature <-> Chromaticity (Black body)

Temperature <-> Chromaticity (Black body)

Color temperature is a characteristic of visible light that has important applications. The color
temperature of a light source is determined by comparing its chromaticity with that of an
ideal black-body radiator. The temperature (usually measured in kelvin, K) is that source's
color temperature at which the heated black-body radiator matches the color of the light
source for a black body source. Higher color temperatures (5,000 K or more) are cool (bluish
white) colors, and lower color temperatures (2,700-3,000 K) warm (yellowish white through
red) colors.

2.0

cmsBool cmsWhitePointFromTemp(ecmsCIExyY™ WhitePoint,
cmsFloat64Number TempK);

Correlates a black body chromaticity from given temperature in °K. Valid range is 4000K-
25000K.

Parameters:
WhitePoint: Pointer to a user-allocated cmsCIExyY variable to receive the resulting
chromaticity.
TempK: Temperature in °K

Returns:
TRUE on success, FALSE on error.

cmsBool cmsTempFromWhitePoint(cmsFloat64Number® TempK,
const cmsCIExyY* WhitePoint);

Correlates a black body temperature in °K from given chromaticity.

Parameters:
TempK: Pointer to a user-allocated cmsFloat64Number variable to receive the
resulting temperature.
WhitePoint: Target chromaticity in cmsCIExyY

Returns:
TRUE on success, FALSE on error.

CIE CAMO2

CIE CAMO02

Viewing conditions. Please note those are CAM model viewing conditions, and not the ICC
tag viewing conditions, which I'm naming cmslCCViewingConditions to make differences
evident. Unfortunately, the tag cannot deal with surround La, Yb and D value so is basically
useless to store CAMO02 viewing conditions.

cmsViewingConditions
cmsCIEXYZ | whitePoint;
cmsFloat64Number | Yb;
cmsFloat64Number | La;
int | surround;

cmsFloat64Number | D value;
Table 43

surround

AVG SURROUND
DIM_ SURROUND
DARK SURROUND

CUTSHEET SURROUND
Table 44

AIWIN (=

D CALCULATE (-1) |

2.0

cmsHANDLE cmsCIECAMO2Init(cmsContext ContextlD,
const cmsViewingConditions* pVC);

Does create a CAMO02 object based on given viewing conditions. Such object may be used
as a color appearance model and evaluated in forward and reverse directions. Viewing
conditions structure is detailed in Table 43. The surround member has to be one of the
values enumerated in Table 44. Degree of chromatic adaptation (d), can be specified in
0...1.0 range, or the model can be instructed to calculate it by using D_CALCULATE
constant (-1).

Parameters:
ContextID: Pointer to a user-defined context cargo.

pVC: Pointer to a structure holding viewing conditions (Table 44)

Returns:
Handle to CAMO2 object or NULL on error.

CIE CAMO2

void cmsCIECAMO02Done(cmsHANDLE hModel);

Terminates a CAMO02 object, freeing all involved resources.
Parameters:

hModel: Handle to a CAMO2 object

Returns:
None

void cmsCIECAMO2Forward(cmsHANDLE hModel,
const cmsCIEXYZ" plin,
cmsJCh* pOut);

Evaluates the CAMO02 model in the forward direction XYZ - JCh

Parameters:
hModel: Handle to a CAMO02 object

pln: Points to the input XYZ value

pOut: Points to the output JCh value
Returns:
None

void cmsCIECAMO2Reverse(cmsHANDLE hModel,
const cmsJCh* pin,
cmsCIEXYZ* pOut);

Evaluates the CAMO02 model in the reverse direction JCh - XYZ

Parameters:
hModel: Handle to a CAMO2 object

pin: Points to the input JCh value
pOut: Points to the output XYZ value

Returns:
None

Gamut boundary description

Gamut boundary description

Gamut boundary description by using Jan Morovic's Segment maxima method. Many
thanks to Jan for allowing me to use his algorithm.

2.0

cmsHANDLE cmsGBDAlloc(cmsContext ContextlD);

Allocates an empty gamut boundary descriptor with no known points.
Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to a gamut boundary descriptor on success, NULL on error.

void cmsGBDFree(cmsHANDLE hGBD);

Frees a gamut boundary descriptor and any associated resources.

Parameters:
hGBD: Handle to a gamut boundary descriptor.
Returns:
None

2.0

cmsBool cmsGDBAddPoint(cmsHANDLE hGBD, const cmsCIELab* Lab);

Adds a new sample point for computing the gamut boundary descriptor. This function can
be called as many times as known points. No memory or other resurces are wasted by
adding new points. The gamut boundary descriptor cannot be checked until
cmsGDBCompute() is called.

Parameters:
hGBD: Handle to a gamut boundary descriptor.
Lab: Pointer to a cmsCIELab value as described in Table 13

Returns:
TRUE on success, FALSE on error.

117

Gamut boundary description k]

2.0

cmsBool cmsGDBCompute(cmsHANDLE hGDB, cmsUInt32Number dwFlags);

Computes the gamut boundary descriptor using all know points and interpolating any
missing sector(s). Call this function after adding all know points with cmsGDBAddPoint()
and before using cmsGDBCheckPoint().

Parameters:
hGBD: Handle to a gamut boundary descriptor.
dwFlags: reserved (unused). Set it to 0
Returns:
TRUE on success, FALSE on error

2.0

cmsBool cmsGDBCheckPoint(cmsHANDLE hGBD, const cmsCIELab* Lab);

Checks whatever a Lab value is inside a given gamut boundary descriptor.

Parameters:
hGBD: Handle to a gamut boundary descriptor.
Lab: Pointer to a cmsCIELab value as described in Table 13

Returns:
TRUE if point is inside gamut, FALSE otherwise.

Gamut mapping

Gamut mapping

I'm using LCh (polar form of Lab) to do

the clipping. b*

L=L b=85 c _F__F__,-f"'

C = sqrt(a*a+b*b) - — "

h = atan(b/a) h a=125
b=-85

Where C=colorfulness and h=hue.

L is unchanged and not used. The gamut boundaries are the black rectangle. | take
a Lab value, if inside gamut, don't touch anything, if outside, for example, the green
point, | convert to LCh, keep h constant, and reduce C (in red) until inside gamut.
This gives the second green point, with quite different a, b, but visually similar.

2.0

cmsBool cmsDesaturateLab(cmsCIELab* Lab,
double amax, double amin,
double bmax, double bmin);

Parameters:
Lab: Pointer to a cmsCIELab value as described in Table 13
amin, amax, bmin, bmax: boundaries of gamut rectangle
Returns:

TRUE on success, FALSE on error

MD5 message digest

MD5 message digest

In cryptography, MD5 (Message-Digest algorithm 5) is a widely used cryptographic hash
function with a 128-bit hash value. As an Internet standard (RFC 1321), MD5 has been
employed in a wide variety of security applications, and is also commonly used to check the
integrity of files. ICC profiles can use MD5 as a checksum, and as a unique identifier for a
profile.

Profile ID as computed by MD5 algorithm
cmsProfilelD (union)

cmsUInt8Number | ID8[16];
cmsUInt16Number | ID16[8];

cmsUInt32Number | ID32[4];
Table 45

2.0

cmsBool cmsMD5computelD(emsHPROFILE hProfile);

Computes a MD5 checksum and stores it as Profile ID in the profile header.

Parameters:
hProfile: Handle to a profile object

Returns:
TRUE on success, FALSE on error

2.0

void cmsGetHeaderProfile|D(cmsHPROFILE hProfile, cmsUInt8Number* ProfilelD);

Retrieves the Profile ID stored in the profile header.

Parameters:
hProfile: Handle to a profile object
ProfilelD: Pointer to a Profile ID union as described in Table 45

Returns:
None

MD5 message digest

void cmsSetHeaderProfile|D(cmsHPROFILE hProfile, cmsUInt8Number* ProfilelD);

Replaces the the Profile ID stored in the profile header.

Parameters:
hProfile: Handle to a profile object
ProfilelD: Pointer to a Profile ID union as described in Table 45

Returns:
None

CGATS.17-200x handling

CGATS.17-200x handling

ANSI CGATS.17 is THE standard text file format for exchanging color measurement data.
This standard text format (the ASCII version is by far the most common) is the format
accepted by most color measurement and profiling applications.

It consists of a Preamble section containing originator information, keyword definitions, etc
and then one or more data sections, each consisting of header and data subsections. The
header subsection is where the BEGIN_DATA_FORMAT and END_DATA_FORMAT
delimiters define the actual data types / units contained in the following tables. The data
subsection contains the BEGIN_DATA and END_DATA delimiters which contain the actual
color information in tabular form.

CGATS.17 text files can contain device (RGB, CMYK, etc), colorimetric (Lab, XYZ, etc),
densitometric, spectral, naming and other information so it is a fairly comprehensive storage
and exchange format.

2.9

cmsHANDLE cmsIT8Alloc(cmsContext ContextlD);

Allocates an empty CGATS.17 object.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to a CGATS. 17 object on success, NULL on error.

2.0

void cmslT8Free(cmsHANDLE cmsIT8);

This function frees the CGATS.17 object. After a call to this function, all memory pointers
associated with the object are freed and therefore no longer valid.

Parameters:
hIT8: A handle to a CGATS. 17 object.

Returns:
None

CGATS.17-200x handling

Tables

In the Little CMS implementation, a CGATS.17 object may contain any number of tables.
Tables are separated by END_DATA keyword. This agrees with the latest CGATS.17 spec.

2.9

cmsUInt32Number cmslIT8TableCount(cmsHANDLE hIT8);

This function returns the number of tables found in the current CGATS object.

Parameters:
hIT8: A handle to a CGATS. 17 object.

Returns:
The number of tables on success, 0 on error.

2.9

cmsint32Number cmslIT8SetTable(cmsHANDLE hiT8, cmsUInt32Number nTable);

This function positions the IT8 object in a given table, identified by its position. Setting
nTable to Table Count + 1 does allocate a new empty table

Parameters:
hIT8: A handle to a CGATS. 17 object.
nTable: The table number (0 based)

Returns:
The current table number on success, -1 on error.

CGATS.17-200x handling

Persistence

These are functions to load/save CGATS.17 objects from file and memory stream.

2.0

cmsHANDLE cmslIT8LoadFromFile(cmsContext ContextlD, const char* cFileName);

This function allocates a CGATS.17 object and fills it with the contents of cFileName. Used
for reading existing CGATS files.

Parameters:
ContextID: Pointer to a user-defined context cargo.
cFileName: The CGATS. 17 file name to read/parse

Returns:
A handle to a CGATS.17 on success, NULL on error.

2.0

cmsHANDLE cmslT8LoadFromMem(cmsContext ContextID,
void *Ptr,
cmsUInt32Number len);

Same as anterior, but the IT8/CGATS.13 stream is read from a memory block.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Ptr: Points to a block of contiguous memory containing the CGATS. 17 stream.
len: stream size measured in bytes.

Returns:
A handle to a CGATS.17 on success, NULL on error.

CGATS.17-200x handling

2.0

cmsBool cmslT8SaveToFile(cmsHANDLE hIT8,
const char® cFileName);

This function saves a CGATS.17 object to afile.

Parameters:
hIT8: A handle to a CGATS. 17 object.
cFileName: Destination filename. Existing file will be overwritten if possible.

Returns:
TRUE on success, FALSE on error

2.0

cmsBool cms|T8SaveToMem(cmsHANDLE hIT8,
void “MempPtr,
cmsUInt32Number® BytesNeeded);

This function saves a CGATS.17 object to a contiguous memory block. Setting MemPtr to
NULL forces the function to calculate the needed amount of memory.

Parameters:
hIT8: A handle to a CGATS. 17 object.
MemPtr: Pointer to a user-allocated memory block or NULL. If specified, It should

be big enough to hold the generated resource.

BytesNeeded: Points to a user-allocated cmsUInt32Number which will receive the
needed memory size in bytes.

Returns:
TRUE on success, FALSE on error

CGATS.17-200x handling

Type and comments

The sheet type is an identifier placed on the very first line of the CGATS.17 object. |_|
2.0

const char* cms|T8GetSheetType(cmsHANDLE hIT8);

This function returns the type of the IT8 object. Memory is handled by the CGATS.17
object and should not be freed by the user.

Parameters:
hiIT8: A handle to a CGATS. 17 object.

Returns:
A pointer to internal block of memory containing the type on success, NULL on

error.

2.9

cmsBool cmsIT8SetSheetType(cmsHANDLE hiT8, const char® Type);

This function sets the type of a CGATS.17 object

Parameters:
hIT8: A handle to a CGATS. 17 object.
Type: The new type

Returns:
TRUE on success, FALSE on error

2.0

cmsBool cmsIT8SetComment(cmsHANDLE hIT8, const char® cComment);

This function is intended to provide a way automated IT8 creators can embed comments
into the file. Comments have no effect, and its only purpose is to document any of the file
meaning. On this function the calling order is important; as successive calls to
cmsIT8SetComment do embed comments in the same order the function is being called.

Parameters:
hIT8: A handle to a CGATS.17 object.
cComment: The comment to inserted

Returns:
TRUE on success, FALSE on error.

CGATS.17-200x handling

Properties

Properties are pairs <identifier> <value>. Each table may contain any number of
properties. Its primary purpose is store simple settings. Additionally, sub-properties are
allowed if <value> is a string in the form:

“‘SUBPROP1,1;SUBPROP2,2;..."

2.9

cmsBool cmslIT8SetPropertyStr(cmsHANDLE hIT8,
const char* cProp,
const char *Str);

Sets a property as a literal string in current table. The string is enclosed in quotes “”.

Parameters:
hIT8: A handle to a CGATS. 17 object.
cProp: A string holding property name.
Str: The literal string.

Returns:
TRUE on success, FALSE on error.

cmsBool cmsIT8SetPropertyDbl(cmsHANDLE hIT8,
const char® cProp,
cmsFloat64Number Val);

Sets a property as a cmsFloat64Number in current table.

Parameters:
hIT8: A handle to a CGATS. 17 object.
cProp: A string holding property name.
Val: The data for the intended property as cmsFloat64Number.

Returns:
TRUE on success, FALSE on error.

CGATS.17-200x handling

2.0

cmsBool cmslIT8SetPropertyHex(cmsHANDLE hITS,
const char* cProp,
cmsUInt32Number Val);

Sets a property as an hexadecimal constant (appends 0x) in current table.

Parameters:
hIT8: A handle to a CGATS. 17 object.
cProp: A string holding property name.
Val: The value to be set (32 bits max)

Returns:
TRUE on success, FALSE on error

cmsBool cmslT8SetPropertyUncooked(cmsHANDLE hIT8,
const char* cProp, const char* Buffer);

Sets a property with no interpretation in current table. No quotes “” are added. No checking
is performed, and it is up to the programmer to make sure the string is valid.

Special prefixes:
Ob : Binary
0x : Hexadecimal

Parameters:
hiIT8: A handle to a CGATS. 17 object.
cProp: A string holding property name.
Buffer: A string holding the uncooked value to place in the CGATS file.

Returns:
TRUE on success, FALSE on error.

CGATS.17-200x handling

cmsBool cmslIT8SetPropertyMulti(cmsHANDLE hITS,
const char* Key, const char* SubKey,
const char *Buffer)

Adds a new sub-property to the property Key. Value of buffer is interpreted literally.

Parameters:
hiIT8: A handle to a CGATS. 17 object.
cKey: A string holding property name.
SubKey: A string holding the sub-property name.
Buffer: A string holding the uncooked value of sub-property.

Returns:
TRUE on success, FALSE on error.

2.9

const char® cmsIT8GetProperty(cmsHANDLE hIT8, const char® cProp);

Gets a property as a literal string in current table. Memory is handled by the CGATS.17
object and should not be freed by the user.

Parameters:
hIT8: A handle to a CGATS. 17 object.
cProp: A string holding property name.

Returns:
A pointer to internal block of memory containing the data for the intended property

on success, NULL on error.

2.0

cmsFloat64Number cmslIT8GetPropertyDbl(cmsHANDLE hIT8, const char® cProp);

Gets a property as a cmsFloat64Number in current table.

Parameters:
hIT8: A handle to a CGATS. 17 object.
cProp: A string holding property name.

Returns:
The data for the intended property interpreted as cmsFloat64Number on success,

0 on error.

CGATS.17-200x handling

2.0

cmsUInt32Number cmsIT8EnumProperties(cmsHANDLE cmsITS,
char ***PropertyNames);

Enumerates all properties in current table.

Parameters:

hiIT8: A handle to a CGATS. 17 object.
PropertyNames: A pointer to a variable of type char** which will receive the table of
property name strings.

Returns:
The number of properties in current table on success, 0 on error.

2.0

cmsUInt32Number cmsIT8EnumPropertyMultilcmsHANDLE hITS,
const char* cProp,
const char ***SubpropertyNames)

Enumerates all the identifiers found in a multi-value property in current table.

Parameters:
hIT8: A handle to a CGATS. 17 object.
cProp: A string holding property name
SubpropertyNames: A pointer to a variable of type char** which will hold the table.

Returns:
The number of identifiers found, or 0 on error.

CGATS.17-200x handling

Datasets

e Number of colums (Samples) is given by predefined property
NUMBER_OF_FIELDS
¢ Number of rows (Patches) is given by predefined property NUMBER_OF_SETS

2.0

const char® cmsIT8GetDataRowCol(cmsHANDLE cmsIT8, int row, int col);

Gets a cell [row, col] as a literal string in current table. This function is fast since it has not
to search columns or rows by name.

Parameters:
hIT8: A handle to a CGATS. 17 object.
row, col: The position of the cell.

Returns:
A pointer to internal block of memory containing the data for the intended cell on

success, NULL on error.

2.9

cmsFloat64Number cms|T8GetDataRowColDbl(cmsHANDLE hIT8,
int row, int col);

Gets a cell [row, col] as a cmsFloat64Number in current table. This function is fast since it
has not to search columns or rows by name.

Parameters:
hIT8: A handle to a CGATS. 17 object.
row, col: The position of the cell.

Returns:
The data for the intended cell interpreted as cmsFloat64Number on success, 0 on

error.

CGATS.17-200x handling

2.0

cmsBool cmslT8SetDataRowCol(cmsHANDLE hIT8,
int row, int col,
const char* Val);

Sets a cell [row, col] as a literal string in current table. This function is fast since it has not to
search columns or rows by name.

Parameters:
hiIT8: A handle to a CGATS. 17 object.
row, col: The position of the cell.
Val: The value to be set, as a literal string.

Returns:
TRUE on success, FALSE on error

cmsBool cmsl|T8SetDataRowColDbl(cmsHANDLE hiT8,
int row, int col,
cmsFloat64Number Val);

Sets a cell [Patch, Sample] as a cmsFloat64Number in current table. This function is fast
since it has not to search columns or rows by name.

Parameters:
hIT8: A handle to a CGATS. 17 object.
row, col: The position of the cell.
Val: The value to be set, as a cmsFloat64Number

Returns:
TRUE on success, FALSE on error

CGATS.17-200x handling

2.0

const char® cmsIT8GetData(cmsHANDLE hIT8,
const char* cPatch,
const char* cSample);

Gets a cell [Patch, Sample] as a literal string (uncooked string) in current table. Memory is
handled by the CGATS.17 object and should not be freed by the user.

Parameters:
hiIT8: A handle to a CGATS. 17 object.
cPatch: The intended patch name (row)
cSample: The intended sample name (column)

Returns:
A pointer to internal block of memory containing the data for the intended cell on

success, NULL on error.

2.9

cmsFloat64Number cmsIT8GetDataDbl(cmsHANDLE hIT8,
const char® cPatch,
const char* cSample);

Gets a cell [Patch, Sample] as a cmsFloat64Number in current table.

Parameters:
hIT8: A handle to a CGATS. 17 object.
cPatch: The intended patch name (row)
cSample: The intended sample name (column)

Returns:
The data for the intended cell interpreted as cmsFloat64Number on success, 0 on

error.

CGATS.17-200x handling

2.0

cmsBool cmsl|T8SetData(cmsHANDLE hITS,
const char* cPatch,
const char* cSample,
const char *Val);

Sets a cell [Patch, Sample] as a literal string (uncooked string) in current table.

Parameters:
hiIT8: A handle to a CGATS. 17 object.
cPatch: The intended patch name (row)
cSample: The intended sample name (column)
Val: The value to be set, as a literal

Returns:
TRUE on success, FALSE on error

2.0

cmsBool cmslIT8SetDataDbl(cmsHANDLE hIT8,
const char”* cPatch,
const char® cSample,
cmsFloat64Number Val);

Sets a cell [Patch, Sample] as a cmsFloat64Number in current table.

Parameters:
hIT8: A handle to a CGATS. 17 object.
cPatch: The intended patch name (row)
cSample: The intended sample name (column)
Val: The value to be set, as a cmsFloat64Number

Returns:
TRUE on success, FALSE on error

CGATS.17-200x handling

2.0

int cmslIT8FindDataFormat (cmsHANDLE hIT8, const char® cSample);

Returns the position (column) of a given data sample name in current table. First column is
0 (SAMPLE_ID).

Parameters:
hIT8: A handle to a CGATS. 17 object.

Returns:
Column number if found, -1 if not found

cmsBool cmslT8SetDataFormat(cmsHANDLE hiIT8, int n, const char *Sample);

Sets column names in current table. First column is 0 (SAMPLE_ID). Special property
NUMBER _OF_FIELDS must be set before calling this function.

Parameters:
hIT8: A handle to a CGATS. 17 object.
n: Column to set name
Sample: Name of data

Returns:
TRUE on success, FALSE on error

2.0

int cmsIT8EnumDataFormat(cmsHANDLE hIT8, char ***SampleNames);

Returns an array with pointers to the column names in current table. SampleNames may be
NULL to get only the number of column names. Memory is associated with the CGATS.17
object, and should not be freed by the user.

Parameters:
hIT8: A handle to a CGATS. 17 object.
SampleNames: A pointer to a variable of type char** which will hold the table.

Returns:
The number of column names in table on success, -1 on error.

CGATS.17-200x handling

2.0

const char® cmsIT8GetPatchName(cmsHANDLE hIT8, int nPatch, char* buffer);

Fills buffer with the contents of SAMPLE_ID column for the set given in nPatch. That
usually corresponds to patch name. Buffer may be NULL to get the internal memory block
used by the CGATS.17 object. If specified, buffer gets a copy of such block. In this case it
should have space for at least 1024 characters.

Parameters:
hiIT8: A handle to a CGATS. 17 object.
nPatch : set number to retrieve name
buffer: A memory buffer to receive patch name, or NULL to allow function to return
internal memory block.

Returns:
A pointer to the patch name, either the user-supplied buffer or an internal memory
block. NULL if error.

void cmslT8DefineDblFormat(cmsHANDLE hIT8, const char* Formatter);

Sets the format string for float numbers. It uses the “C” sprintf convention. The default
format string is "%.10g"

Parameters:
hIT8: A handle to a CGATS. 17 object.

Returns:
None

Screening structures [Tkl

Screening structures

cmsPRINTER_DEFAULT_SCREENS 0x0001
cmsFREQUENCE_UNITS_LINES_CM 0x0000

cmsFREQUENCE_UNITS LINES INCH | 0x0002
Table 46

Spot Shape
cmsSPOT_UNKNOWN
cmsSPOT _PRINTER _DEFAULT
cmsSPOT _ROUND
cmsSPOT_DIAMOND
cmsSPOT_ELLIPSE

cmsSPOT _LINE

cmsSPOT SQUARE

cmsSPOT_ CROSS
Table 47

N WINI~O

cmsScreeningChannel
cmsFloat64Number Frequency;
cmsFloat64Number ScreenAngle;

cmsUInt32Number SpotShape;
Table 48

cmsScreening
cmsUInt32Number Flag;
cmsUInt32Number nChannels;

cmsScreeningChannel | Channels[cmsMAXCHANNELS];
Table 49

Named color lists

Named color lists
Specialized dictionaries for dealing with named color profiles.

2.9

cmsNAMEDCOLORLIST* cmsAllocNamedColorList(cmsContext ContextlD,
cmsUInt32Number n,
cmsUInt32Number ColorantCount,
const char” Prefix,
const char* Suffix);

Allocates an empty named color dictionary.

Parameters:
ContextID: Pointer to a user-defined context cargo.

N: Initial number of spot colors in the list

Colorant count: Number of channels of device space (i.e, 3 for RGB, 4 for CMYK,
etc,)

Prefix, Suffix: fixed strings for all spot color names, e.q., “coated”, “system”, ...

Returns:
A pointer to a newly created named color list dictionary on success, NULL on error.

2.9

void cmsFreeNamedColorList(cmsNAMEDCOLORLIST* v);

Destroys a Named color list object, freeing any associated resources.

Parameters:

v: A pointer to a named color list dictionary object.
Returns:

None

cmsNAMEDCOLORLIST* cmsGetNamedColorList(cmsHTRANSFORM xform);

Retrieve a named color list from a given color transform.

Parameters:
xform: Handle to a color transform object.

Returns:
A pointer to a named color list dictionary on success, NULL on error.

138

Named color lists

cmsNAMEDCOLORLIST* cmsDupNamedColorList(const cmsNAMEDCOLORLIST* v);

Duplicates a named color list object, and all associated resources.

Parameters:
v: A pointer to a named color list dictionary object.

Returns:
A pointer to a newly created named color list dictionary on success, NULL on error.

2.0

cmsBool cmsAppendNamedColor(cmsNAMEDCOLORLIST* v,
const char* Name,
cmsUInt16Number PCS[3],
cmsUInt16Number Colorant[cmsMAXCHANNELS]);

Adds a new spot color to the list. If the number of elements in the list exceeds the initial
storage, the list is realloc’ed to accommodate things.

Parameters:
v: A pointer to a named color list dictionary object.

Name: The spot color name without any prefix or suffix specified in
cmsAllocNamedColorList

PCS [3]: Encoded PCS coordinates.

Colorant[]: Encoded values for device colorant.

Returns:
TRUE on success, FALSE on error

cmsUInt32Number cmsNamedColorCount(const cmsNAMEDCOLORLIST* v);

Returns the number of spot colors in a named color list.

Parameters:
v: A pointer to a named color list dictionary object.

Returns:
the number of spot colors on success, 0 on error.

139

Named color lists ko)

cmsInt32Number cmsNamedColorIndex(const cmsNAMEDCOLORLIST* v,
const char® Name);

Performs a look-up in the dictionary and returns an index on the given color name.

Parameters:
v: A pointer to a named color list dictionary object.

Returns:
Index on name, or -1 if the spot color is not found.

cmsBool cmsNamedColorinfo(const cmsNAMEDCOLORLIST* NamedColorList,
cmsUInt32Number nColor,
char* Name,
char* Prefix,
char® Suffix,
cmsUInt16Number® PCS,
cmsUInt16Number® Colorant);

Gets extended information on a spot color, given its index. Required storage is of fixed
size.

Parameters:
NamedColorList: A pointer to a named color list dictionary object.

nColor: Index to the spot color to retrieve

Name: Pointer to a 256-char array to get the name, NULL to ignore.

Prefix: Pointer to a 33-char array to get the prefix, NULL to ignore

Suffix: Pointer to a 33-char array to get the suffix, NULL to ignore.

PCS: Pointer to a 3-cmsUInt16Number to get the encoded PCS, NULL to ignore

PCS: Pointer to a 16-cmsUInt16Number to get the encoded Colorant, NULL to
ignore

Returns:
TRUE on success, FALSE on error.

Profile sequences. [EY!

Profile sequences.

Profile sequence descriptors. Some fields come from profile sequence descriptor tag, others
come from Profile Sequence Identifier Tag. The user is allowed to access the members of
those structures. Profile sequence can be read/written by using cmsReadTag and
cmsWriteTag functions.

cmsPSEQDESC
cmsSignature deviceMfg;
cmsSignature deviceModel;
cmsUInt64Number attributes;
cmsTechnologySignature | technology;
cmsProfilelD ProfilelD;
cmsMLU* Manufacturer;
cmsMLU* Model;
cmsMLU* Description;
Table 50
cmsSEQ
cmsUInt32Number n;
cmsContext ContextID;
cmsPSEQDESC* Seq;
Table 51

cmsSEQ* cmsAllocProfileSequenceDescription(cmsContext ContextlD,
cmsUInt32Number n);

Creates an empty container for profile sequences.

Parameters:
ContextID: Pointer to a user-defined context cargo.

N : Number of profiles in the sequence

Returns:
A pointer to a profile sequence object on success, NULL on error.

Profile sequences. [

2.9

cmsSEQ* cmsDupProfileSequenceDescription(const cmsSEQ* pseq);

Duplicates a profile sequence object, and all associated resources.

Parameters:
Pseq: A pointer to a profile sequence object.

Returns:
A pointer to a profile sequence object on success, NULL on error.

void cmsFreeProfileSequenceDescription(cmsSEQ* pseq);

Destroys a profile sequence object, freeing all associated memory.

Parameters:
Pseq: A pointer to a profile sequence object.

Returns:
None

Multilocalized unicode management

Multilocalized unicode management

MLU funtions are the low-level interface to access the localization features of V4 ICC
profiles. Little CMS does offer a high-level interface for easy operation. You may want,
however, handle those objects by yourself.

LanguageCode: first name language code from ISO 639-2.
http://lcweb.loc.gov/standards/is0639-2/iso639jac.html
CountryCode: first name region code from ISO 3166.

http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html

#define cmsNoLanguage "\0\0"
#define cmsNoCountry "\0\0"
#define cmsV2Unicode "\xff\xff"

2.0

cmsMLU* cmsMLUalloc(cmsContext ContextlD, cmsUInt32Number nltems);

Allocates an empty multilocalized unicode object.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A pointer to a multilocalized unicode object on success, NULL on error.

void cmsMLUfree(cmsMLU* mlu);

Destroys a multilocalized unicode object, freeing any associated resources.

Parameters:

mlu: a pointer to a multilocalized unicode object.
Returns:

None

Multilocalized unicode management

2.0
cmsMLU* cmsMLUdup(const cmsMLU* mlu);
Duplicates a multilocalized unicode object, and all associated resources.
Parameters:
mlu: a pointer to a multilocalized unicode object.
Returns:
A pointer to a multilocalized unicode object on success, NULL on error.
2.0

cmsBool cmsMLUsetASCllI(cmsMLU* mlu,
const char LanguageCode[3], const char CountryCode[3],
const char® ASCIIString);

Fills an ASCII (7 bit) entry for the given Language and country.

Parameters:
miu: a pointer to a multilocalized unicode object.

Language Code []: Array of 3 chars describing the language
CountryCode []: Array of 3 chars describing the country
ASCIIString: String to add.

Returns:
TRUE on success, FALSE on error.

2.0

cmsBool cmsMLUsetWide(cmsMLU* mlu,
const char LanguageCode[3], const char CountryCode[3],
const wchar_t* WideString);

Fills a UNICODE wide char (16 bit) entry for the given Language and country.

Parameters:
mlu: a pointer to a multilocalized unicode object.

Language Code []: Array of 3 chars describing the language
CountryCode []: Array of 3 chars describing the country
WideString: String to add.

Returns:
TRUE on success, FALSE on error.

Multilocalized unicode management

cmsBool cmsMLUsetUTF8(cmsMLU* mlu,
const char LanguageCode[3], const char CountryCode[3],
const char_t* UTF8String);

Fills a wide char (16 bit) entry for the given Language and country by converting it from
UTF8 encoding.

Parameters:
miu: a pointer to a multilocalized unicode object.

Language Code []: Array of 3 chars describing the language
CountryCode []: Array of 3 chars describing the country
UTF8String: String to add.

Returns:
TRUE on success, FALSE on error.

Multilocalized unicode management

2.9

cmsUInt32Number cmsMLUgetASClI(const cmsMLU* mlu,
const char LanguageCode[3],
const char CountryCode[3],
char* Buffer, cmsUInt32Number BufferSize);

Gets an ASCII (7 bit) entry for the given Language and country. Set Buffer to NULL to get
the required size.

Parameters:
mlu: a pointer to a multilocalized unicode object.

Language Code []: Array of 3 chars describing the language
CountryCode []: Array of 3 chars describing the country
Buffer: Pointer to a char buffer

BufferSize: Size of given buffer.

Returns:
Number of bytes read into buffer.

2.0

cmsUInt32Number cmsMLUgetWide(const cmsMLU* mlu,
const char LanguageCode[3],
const char CountryCode[3],
wchar_t* Buffer,
cmsUInt32Number BufferSize);

Gets a UNICODE wchar_t (16 bit) entry for the given Language and country. Set Buffer to
NULL to get the required size.

Parameters:
miu: a pointer to a multilocalized unicode object.

Language Code []: Array of 3 chars describing the language
CountryCode []: Array of 3 chars describing the country
Buffer: Pointer to a wchar _t buffer

BufferSize: Size of given buffer.

Returns:
Number of bytes read into buffer.

Multilocalized unicode management

2.16

cmsUInt32Number cmsMLUgetUTF8(const cmsMLU* miu,
const char LanguageCode[3],
const char CountryCode[3],
char* Buffer,
cmsUInt32Number BufferSize);

Gets a UTF8 entry for the given Language and country. Set Buffer to NULL to get the
required size.

Parameters:
miu: a pointer to a multilocalized unicode object.

Language Code []: Array of 3 chars describing the language
CountryCode []: Array of 3 chars describing the country
Buffer: Pointer to a wchar _t buffer

BufferSize: Size of given buffer.

Returns:
Number of bytes read into buffer.

Multilocalized unicode management

2.0

cmsBool cmsMLUgetTranslation(const cmsMLU* mlu,
const char LanguageCode[3],
const char CountryCode[3],
char ObtainedLanguage[3],
char ObtainedCountry[3]);

Obtains the translation rule for given multilocalized unicode object.

Parameters:
mlu: a pointer to a multilocalized unicode object.

Language Code []: Array of 3 chars describing the language
CountryCode []: Array of 3 chars describing the country
ObtainedLanguage []: Array of 3 chars to get the language translation.
ObtainedCode []: Array of 3 chars to get the country translation.

Returns:
TRUE on success, FALSE on error

2.5

cmsUInt32Number cmsMLUtranslationsCount(const cmsMLU* mlu);

Obtains the number of true translations stored in a given multilocalized unicode object.

Parameters:
mlu: a pointer to a multilocalized unicode object.

Returns:
Number of translations on success, 0 on error.

Multilocalized unicode management

2.5

cmsBool cmsMLUtranslationsCodes(const cmsMLU* mlu,
cmsUInt32Number idx,
char LanguageCode[3],
char CountryCode[3]);

Obtains the translation codes for a true translation stored in a given multilocalized unicode
object.

Parameters:
mlu: a pointer to a multilocalized unicode object.

idx: index to the true translation to retrieve info. 0-based.
Language Code []: Array of 3 chars to store the code describing the language
CountryCode []: Array of 3 chars to store the code describing the country

Returns:
TRUE on success, FALSE on error

Dictionary

Dictionary

This is a simple linked list used to store pairs Name-Value for the dictionary meta-tag, as
described in ICC spec 4.4

typedef struct _cmsDICTentry_struct {
struct _cmsDICTentry_struct® Next;

cmsMLU *DisplayName;
cmsMLU *DisplayValue;
wchar_t* Name;
wchar_t* Value;

} cmsDICTentry;

cmsHANDLE cmsDictAlloc(cmsContext ContextID);

Allocates an empty dictionary linked list object.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
On success, a handle to a newly created dictionary linked list. NULL on error.

.2

void cmsDictFree(cmsHANDLE hDict);

Destroys a dictionary linked list object, freeing any associated resource.

Parameters:
hDict: Handle to a dictionary linked list object.

Returns:
None

Dictionary

2.2

cmsHANDLE cmsDictDup(cmsHANDLE hDict);

Duplicates a dictionary linked list object.

Parameters:
hDict: Handle to a dictionary linked list object.

Returns:
On success, a handle to a newly created dictionary linked list object. On error,

NULL.

2.2

cmsBool cmsDictAddEntry(cmsHANDLE hDict,
const wchar_t* Name, const wchar_t* Value,
const cmsMLU *DisplayName,
const cmsMLU *DisplayValue);

Adds data to a dictionary linked list object. No check for duplicity is made. Dictionary and
Name parameters a required, rest is optional an NULL may be used.

Parameters:
hDict: Handle to a dictionary linked list object.

Name, Value: Wide char strings. Value may be NULL
DisplayName, Display Value: Multilocalized Unicode objects. May be NULL.

Returns:
Operation result

const cmsDICTentry* cmsDictGetEntryList(cmsHANDLE hDict)

Returns a pointer to first element in linked list.

Parameters:
hDict: Handle to a dictionary linked list object.

Returns:
Pointer to element on success, NULL on error or end of list.

Dictionary

2.2

const cmsDICTentry* cmsDictNextEntry (const cmsDICTentry* e)

Returns a pointer to the next element in linked list.

Parameters:
e: Pointer to element

Returns:
Pointer to element on success, NULL on error or end of list.

Tone curves

Tone curves

Tone curves are powerful constructs that can contain curves specified in diverse ways. The
curve is stored in segments, where each segment can be sampled or specified by
parameters. A 16 bit simplification of the *whole* curve is kept for optimization purposes.
For float operation, each segment is evaluated separately. Plug-ins may be used to define
new parametric schemes.

2.0

cmsFloat32Number cmsEvalToneCurveFloat(const cmsToneCurve® Curve,
cmsFloat32Number v);

Evaluates the given floating-point number across the given tone curve.

Parameters:
Curve: pointer to a tone curve object.

V: floating point number to evaluate

Returns:
Operation result

cmsUInt16Number cmsEvalToneCurve16(const cmsToneCurve® Curve,
cmsUInt16Number v);

Evaluates the given 16-bit number across the given tone curve. This function is
significantly faster than cmsEvalToneCurveFloat, since it uses a pre-computed 16-bit
lookup table.

Parameters:
Curve: pointer to a tone curve object.

V: 16 bit Number to evaluate

Returns:
Operation result

153

Tone curves [l

Parametric curves
See a table of built-in types below. User can increase the number of available types by using
a proper plug-in. Parametric curves allow 10 parameters at most.

Function Number Parameter | Comment
S
1 Y
Y =XV
2 yab CIE 122-1966
b
Y = (aX + bY" (XZ—E>
b
Y=0 (X < ——)
a
, 3 yabec IEC 61966-3
Y=(@X+b)+c (XZ_E>
b
Y=c (X < ——)
a
4 yabcd IEC 61966-2.1 (SRGB)
Y = (aX + b)" X=d
Y=cX X <d
5 yabcdef
Y=(@X+Db)+e K =d)
Y=(X+f) X <d)
6 yabc Identical to 5, unbounded.
Y=(@X+b)+c
7 yabcd
Y=alog(bX"+c)+d
8 abcde
Y = ab(X+D 4 ¢
108 y S-Shaped sigmoidal
Y=(01-(1-x)Yni/ (deprecated do not use)
_ 1 109 y Centered Sigmoid.
YoV) = T5 e ~ 32
= 1
~ 2Yb(k, 1)
Y(k)=C*Yb(k,2y—1)+05

Table 52

Tone curves [l

2.0

cmsToneCurve® cmsBuildParametricToneCurve(cmsContext ContextID,
cmsInt32Number Type,
const cmsFloat64Number Paramsl]);

Builds a parametric tone curve according Table 52

Parameters:
ContextID: Pointer to a user-defined context cargo.

Type: Number of parametric tone curve, according to Table 52 for built-in, or other
if tone-curve plug-in is being used.

Params[10]: Array of tone curve parameters, according to Table 52 for built-in, or
other if tone-curve plug-in is being used.

Returns:
Pointer to a newly created tone curve object on success, NULL on error.

cmsToneCurve® cmsBuildGamma(cmsContext ContextlD,
cmsFloat64Number Gamma);

Simplified wrapper to cmsBuildParametricToneCurve. Builds a parametric curve of type 1.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Gamma: Value of gamma exponent

Returns:
Pointer to a newly created tone curve object on success, NULL on error.

Tone curves [k

const cmsCurveSegment* cmsGetToneCurveSegment(cmsInt32Number segment,
const cmsToneCurve* t);

Returns a pointer to the segment structure stored into the tone curve object. Interpretation
of the meaning and number of parameters depends of the parametric type, as described in
Table 52 Please note more parametric curve types can be added across plug-ins.

If the tone curve has not the asked segment, the function returns NULL.

This function can be used to iterate tone curves to get all segments and types.

segment_num=0;

do{
Seg = cmsGetToneCurveSegment(segment_num, curve);
If (Seg == NULL) break;
segment_num++;

[do whatever you wish with segment, type 0 means tabulated]|

} while (1);

Parameters:

Curve: pointer to a tone curve object.
Returns:

Pointer to the internal segment structure.

Tone curves

Segmented curves

Segmented curves are formed by several segments. This structure describes a curve
segment.

cmsCurveSegment
cmsFloat32Number x0, x1; Domain; for x0 < x <= x1
cmsint32Number Type; Parametric type, Type == 0 means sampled
segment.
Negative values are reserved
cmsFloat64Number Params[10]; Parameters if Type =0
cmsUInt32Number nGridPoints; Number of grid points if Type ==
cmsUInt32Number* SampledPoints; | Points to an array of floats if Type == 0

Table 53

2.9

cmsToneCurve* cmsBuildSegmentedToneCurve(cmsContext ContextlD,
cmsInt32Number nSegments,
const cmsCurveSegment Segments]);

Builds a tone curve from given segment information.

Parameters:
ContextID: Pointer to a user-defined context cargo.
nSegments: Number of segments
Segments[]: Array of structures described in Table 53

Returns:
Pointer to a newly created tone curve object on success, NULL on error.

157

Tone curves

Tabulated curves

2.9

cmsToneCurve® cmsBuildTabulatedToneCurve16(cmsContext ContextlD,
cmsint32Number nEntries,
const cmsUInt16Number values|]);

Builds a tone curve based on a table of 16-bit values. Tone curves built with this function
are restricted to 0...1.0 domain.

Parameters:
ContextID: Pointer to a user-defined context cargo.

nEntries: Number of sample points
values []: Array of samples. Domain is 0...65535.

Returns:
Pointer to a newly created tone curve object on success, NULL on error.

2.9

cmsToneCurve* cmsBuildTabulatedToneCurveFloat(cmsContext ContextlD,
cmsUInt32Number nEntries,
const cmsFloat32Number values|]);

Builds a tone curve based on a table of floating point values. Tone curves built with this
function are not restricted to 0...1.0 domain.

Parameters:
ContextID: Pointer to a user-defined context cargo.

nEntries: Number of sample points
values []: Array of samples. Domain of samples is 0...1.0

Returns:
Pointer to a newly created tone curve object on success, NULL on error.

158

Tone curves

Curve handling

2.0

void cmsFreeToneCurve(cmsToneCurve® Curve);

Destroys a tone curve object, freeing any associated resource.

Parameters:
Curve: pointer to a tone curve object.

Returns:
None

void cmsFreeToneCurveTriple(cmsToneCurve* Curves[3]);

Destroys tree tone curve object placed into an array. This function is equivalent to call
three times cmsFreeToneCurve, one per object. It exists because conveniency.

Parameters:

Curves []: array to 3 pointers to tone curve objects.
Returns:

None

cmsToneCurve* cmsDupToneCurve(const cmsToneCurve* Src);

Duplicates a tone curve object, and all associated resources.

Parameters:
Src: pointer to a tone curve object.

Returns:
Pointer to a newly created tone curve object on success, NULL on error.

159

Tone curves

2.0

cmsToneCurve® cmsReverseToneCurve(const cmsToneCurve® InGamma);

Creates a tone curve that is the inverse f~! of given tone curve.

Parameters:
InGamma: pointer to a tone curve object.

Returns:
Pointer to a newly created tone curve object on success, NULL on error.

2.0

cmsToneCurve® cmsReverseToneCurveEx(cmsInt32Number nResultSamples,
const cmsToneCurve* InGamma);

Creates a tone curve that is the inverse f~1 of given tone curve. In the case it couldn’t be
analytically reversed, a tablulated curve of nResultSamples is created.

Parameters:
nResultSamples: Number of samples to use in the case origin tone curve couldn’t

be analytically reversed
InGamma: pointer to a tone curve object.

Returns:
Pointer to a newly created tone curve object on success, NULL on error.

160

Tone curves ek

2.0

cmsToneCurve® cmsJoinToneCurve(cmsContext ContextlD,
const cmsToneCurve® X,
const cmsToneCurve” Y,
cmsUInt32Number nPoints);

Composites two tone curves in the form Y~1(X(¢))

Parameters:
ContextID: Pointer to a user-defined context cargo.

X, Y : Pointers to tone curve objects.
nPoints: Sample rate for resulting tone curve.

Returns:
Pointer to a newly created tone curve object on success, NULL on error.

cmsBool cmsSmoothToneCurve(cmsToneCurve* Tab,
cmsFloat64Number lambda);

Smoothes tone curve according to the lambda parameter. From: Eilers, P.H.C. (1994)
Smoothing and interpolation with finite differences. in: Graphic Gems |V, Heckbert, P.S.
(ed.), Academic press.

Parameters:
Tab: pointer to a tone curve object.

Lambda: degree of smoothing (

Returns:
TRUE on success, FALSE on error

Tone curves

Information on tone curve functions

Those functions do return information or estimations about given tone curves.

2.9

cmsBool cmslsToneCurveMultisegment(const cmsToneCurve* InGamma);

Returns TRUE if the tone curve contains more than one segment, FALSE if it has only one
segment.

Parameters:
InGamma: pointer to a tone curve object.

Returns:
TRUE or FALSE.

2.0

cmsBool cmslsToneCurvelinear(const cmsToneCurve* Curve);

Returns an estimation of cube being an identity (1:1) in the [0..1] domain. Does not take
unbounded parts into account. This is just a coarse approximation, with no mathematical
validity.

Parameters:
Curve: pointer to a tone curve object.

Returns:
TRUE or FALSE.

2.0

cmsBool cmslsToneCurveMonotonic(const cmsToneCurve* t);

Returns an estimation of monotonicity of curve in the [0..1] domain. Does not take
unbounded parts into account. This is just a coarse approximation, with no mathematical
validity.

Parameters:
t: pointer to a tone curve object.

Returns:
TRUE or FALSE.

162

Tone curves [ilef]

2.0

cmsBool cmslsToneCurveDescending(const cmsToneCurve* t);

Returns TRUE if (0) > f(1) , FALSE otherwise. Does not take unbounded parts into
account.

Parameters:
t: pointer to a tone curve object.

Returns:
TRUE or FALSE.

2.0

cmsFloat64Number cmsEstimateGamma(const cmsToneCurve™* t,
cmsFloat64Number Precision);

Estimates the apparent gamma of the tone curve by using least squares fitting to a pure
exponential expression in the f(x) = x”. The parameter vy is estimated at the given precision.

Parameters:
t: pointer to a tone curve object.

Precision: The maximum standard deviation allowed on the residuals, 0.01 is a fair
value, set it to a big number to fit any curve, mo matter how good is the fit.

Returns:
The estimated gamma at given precision, or -1.0 if the fitting has less precision.

Tone curves

2.4

cmsUInt32Number cmsGetToneCurveEstimatedTableEntries (const cmsToneCurve™ t);

Tone curves do maintain a shadow low-resolution tabulated representation of the curve.
This function returns the number of entries such table has.

Parameters:
t: pointer to a tone curve object.

Returns:
The number of entries for the internal table estimating the curve.

2.4

cmsUInt16Number* cmsGetToneCurveEstimatedTable(const cmsToneCurve™ t);

Tone curves do maintain a shadow low-resolution tabulated representation of the curve.
This function returns a pointer to this table.

Parameters:
t: pointer to a tone curve object.
Returns:
A pointer to the estimation table, which has 16-bit precision.

164

Pipelines

Pipelines

Pipelines are a convenient way to model complex operations on image data. Each pipeline
may contain an arbitrary number of stages. Each stage performs a single operation.
Pipelines may be optimized to be executed on a certain format (8 bits, for example) and can
be saved as LUTs in ICC profiles.

2.0

cmsPipeline* cmsPipelineAlloc(cmsContext ContextlD,
cmsUInt32Number InputChannels,
cmsUInt32Number OutputChannels);

Allocates an empty pipeline. Final Input and output channels must be specified at creation
time.

Parameters:
ContextID: Pointer to a user-defined context cargo.

InputChannels, OutputChannels: Number of channels on input and output.

Returns:
A pointer to a pipeline on success, NULL on error.

2.0

void cmsPipelineFree(cmsPipeline* lut);

Frees a pipeline and all owned stages.

Parameters:
lut: Pointer to a pipeline object.

Returns:
None

cmsPipeline* cmsPipelineDup(const cmsPipeline* Orig);

Duplicates a pipeline object, and all associated resources.

Parameters:
Orig: Pointer to a pipeline object.

Returns:
A pointer to a pipeline on success, NULL on error.

165

Pipelines

2.0
cmsBool cmsPipelineCat(cmsPipeline* |1, const cmsPipeline™ 12);
Appends pipeline 12 at the end of pipeline |1. Channel count must match.
Parameters:
11, 12: Pointer to a pipeline object.
Returns:
TRUE on success, FALSE on error.

void cmsPipelineEvalFloat(const cmsFloat32Number In[],
cmsFloat32Number Out[],
const cmsPipeline” lut);

Evaluates a pipeline using floating point numbers.

Parameters:
In[]: Input values.
Out[]: Output values.
lut: Pointer to a pipeline object.

Returns:
None

void cmsPipelineEval16(const cmsUInt16Number In[],
cmsUInt16Number Out[],
const cmsPipeline® lut);

Evaluates a pipeline usin 16-bit numbers, optionally using the optimized path.

Parameters:
In[]: Input values.
Out{]: Output values.
lut: Pointer to a pipeline object.

Returns:
None

166

Pipelines
2.0
cmsBool cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],
cmsFloat32Number Result[],
cmsFloat32Number Hint[],
const cmsPipeline” lut);
Evaluates a pipeline in the reverse direction, using Newton’s method.
Parameters:
Target|]: Input values.
Result[]: Output values.
Hint[]: Where begin the search
lut: Pointer to a pipeline object.
Returns:
TRUE on success, FALSE on error.
2.0

cmsUInt32Number cmsPipelinelnputChannels(const cmsPipeline™ lut);

Returns the number of input channels of a given pipeline.

Parameters:
lut: Pointer to a pipeline object.

Returns:
Number of channels on success, 0 on error.

cmsUInt32Number cmsPipelineOutputChannels(const cmsPipeline” lut);

Returns number of output channels of a given pipeline.

Parameters:
lut: Pointer to a pipeline object.

Returns:
Number of channels on success, 0 on error.

167

Pipelines [ls1s)

2.0
cmsUInt32Number cmsPipelineStageCount(const cmsPipeline® Iut);
Returns number of stages of a given pipeline.
Parameters:
lut: Pointer to a pipeline object.
Returns:
Number of stages of pipeline.
2.0

void cmsPipelinelnsertStage(cmsPipeline” lut, cmsStageloc loc, cmsStage™ mpe);

Inserts a stage on either the head or the tail of a given pipeline. Note that no duplication of
mpe structures is done, this function only adds a reference of mpe in the pipeline linked
list. You cannot free the mpe object after using this function.

Parameters:
lut: Pointer to a pipeline object.
Loc: enumerated constant, either cmsAT_BEGIN or cmsAT_END
Mpe: Pointer to a stage object

Returns:
None

2.0

void cmsPipelineUnlinkStage(cmsPipeline” lut, cmsStagelLoc loc, cmsStage*™ mpe);

Removes the stage from the pipeline. Additionally it can grab the stage without freeing it.
To do so, caller must specify a variable to receive a pointer to the stage being unlinked. If
mpe is NULL, the stage is then removed and freed.

Parameters:
lut: Pointer to a pipeline object.
Loc: enumerated constant, either cmsAT_BEGIN or cmsAT_END
mpe: Pointer to a variable to receive a pointer to the stage object being unlinked.
NULL to free the resource automatically.

Returns:
None

Pipelines [ls)

2.0

cmsStage® cmsPipelineGetPtrToFirstStage(const cmsPipeline® ut);

Get a pointer to the first stage in the pipeline, or NULL if pipeline is empty. Intended for
iterators.

Parameters:
lut: Pointer to a pipeline object.

Returns:
A pointer to a pipeline stage on success, NULL on empty pipeline.

2.9

cmsStage” cmsPipelineGetPirTolLastStage(const cmsPipeline” |ut);

Get a pointer to the last stage in the pipeline, or NULL if pipeline is empty. Intended for
iterators.

Parameters:
lut: Pointer to a pipeline object.

Returns:
A pointer to a pipeline stage on success, NULL on empty pipeline.

cmsStage* cmsStageNext(const cmsStage* mpe);

Returns next stage in pipeline list, or NULL if end of list. Intended for iterators.
Parameters:
mpe: a pointer to the actual stage object.

Returns:
A pointer to the next stage in pipeline or NULL on end of list.

Pipelines [0

2.0

cmsBool cmsPipelineCheckAndRetreiveStages(const cmsPipeline™ Lut,
cmsUInt32Number n, ...);

This function is quite useful to analyze the structure of a Pipeline and retrieve the Stage
elements that conform the Pipeline. It should be called with the Pipeline, the number of
expected stages and then a list of expected types followed with a list of double pointers to
Stage elements. If the function founds a match with current pipeline, it fills the pointers
and returns TRUE if not, returns FALSE without touching anything.

Parameters:
Lut: Pointer to a pipeline object.
N: Number of expected stages
.... list of types followed by a list of pointers to variables to receive pointers to stage
elements

Returns:
TRUE on success, FALSE on error.

2.9

cmsBool cmsPipelineSetSaveAs8bitsFlag(cmsPipeline® lut, cmsBool On);

Sets an internal flag that marks the pipeline to be saved in 8 bit precision. By default, all
pipelines are saved on 16 bits precision on AtoB/BToA tags and in floating point precision
on DToB/BToD tags.

Parameters:
lut: Pointer to a pipeline object.
On: State of the flag, TRUE=Save as 8 bits, FALSE=Save as 16 bits

Returns:
TRUE on success, FALSE on error

Pipelines

Stage functions

Stages are single-step operations that can be chained to create pipelines. Actual stage types
does include matrices, tone curves, Look-up interpolation and user-defined. There are
functions to create new stage types and a plug-in type to allow stages to be saved in multi
profile elements tag types. See the plug-in API for further details.

2.9

cmsStage” cmsStageAllocldentity(cmsContext ContextlD,
cmsUInt32Number nChannels);

Creates an empty (identity) stage that does no operation. May be needed in order to save
the pipeline as AToB/BToA tags in ICC profiles.

Parameters:
ContextID: Pointer to a user-defined context cargo.

nChannels: Number of channels

Returns:
A pointer to a pipeline stage on success, NULL on error.

2.0

cmsStage”™ cmsStageAllocToneCurves(cmsContext ContextlD,
cmsUInt32Number nChannels,
cmsToneCurve® const Curves|[]);

Creates a stage that contains nChannels tone curves, one per channel. Setting Curves to
NULL forces identity (1:1) curves to be used. The stage keeps and owns a private copy of
the tone curve objects.

Parameters:
ContextID: Pointer to a user-defined context cargo.

nCurves: Number of Channels of stage
Curves[] : Array of tone curves objects, one per channel.

Returns:
A pointer to a pipeline stage on success, NULL on error.

171

Pipelines i

2.0

cmsStage” cmsStageAllocMatrix(cmsContext ContextlD,
cmsUInt32Number Rows, cmsUInt32Number Cols,
const cmsFloat64Number* Matrix,
const cmsFloat64Number* Offset);

Creates a stage that contains a matrix plus an optional offset. out = matrix * in + offset
Note that Matrix is specified in double precision, whilst CLUT has only float precision. That
is because an ICC profile can encode matrices with far more precision that CLUTS.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Rows, Cols: Dimensions of matrix
Matrix []: Points to a matrix of [Rows, Cols] Row major
Offset[]: Points to a vector of [Rows], NULL if no offset is to be applied.

Returns:
A pointer to a pipeline stage on success, NULL on error.

Note: For plug-in writers, the order of matrix and offset is different from VEC3 and MAT3
since those are unrelated types, used only in plug-ins.

Pipelines

2.9

cmsStage” cmsStageAllocCLut16bit(cmsContext ContextlD,
cmsUInt32Number nGridPoints,
cmsUInt32Number inputChan,
cmsUInt32Number outputChan,
const cmsUInt16Number® Table);

Creates a stage that contains a 16 bits multidimensional lookup table (CLUT). Each
dimension has same resolution. The CLUT can be initialized by specifying values in Table
parameter. The recommended way is to set Table to NULL and use
cmsStageSampleCLut16bit with a callback, because this way the implementation is
independent of the selected number of grid points.

The CLUT is organized as an i-dimensional array with a given number of grid points in each
dimension, where i is the number of input channels in the table. The dimension
corresponding to the first input channel varies least rapidly and the dimension corresponding
to the last input channel varies most rapidly. Each grid point value is an o-byte array, where
o is the number of output channels. The first sequential byte of the entry contains the function
value for the first output function, the second sequential byte of the entry contains the
function value for the second output function, and so on until all the output functions have
been supplied. Each byte in the CLUT is appropriately normalized to the range 0 to 255.

Parameters:
ContextID: Pointer to a user-defined context cargo.
nGridPoints: the number of nodes (same for each component).
inputChan: Number of input channels.
outputChan: Number of output channels.
Table: a pointer to a table of cmsUInt16Number, holding initial values for nodes. If
NULL the CLUT is initialized to zero.

Returns:
A pointer to a pipeline stage on success, NULL on error.

173

Pipelines V&

2.0

cmsStage® cmsStageAllocCLutFloat(cmsContext ContextlD,
cmsUInt32Number nGridPoints,
cmsUInt32Number inputChan,
cmsUInt32Number outputChan,
const cmsFloat32Number * Table);

Creates a stage that contains a float multidimensional lookup table (CLUT). Each dimension
has same resolution. The CLUT can be initialized by specifying values in Table parameter.
The recommended way is to set Table to NULL and use cmsStageSampleCLutFloat with a
callback, because this way the implementation is independent of the selected number of
grid points.

Parameters:
ContextID: Pointer to a user-defined context cargo.
nGridPoints: the number of nodes (same for each component).
inputChan: Number of input channels.
outputChan: Number of output channels.
Table: a pointer to a table of cmsFloat32Number, holding initial values for nodes. If
NULL the CLUT is initialized to zero.

Returns:
A pointer to a pipeline stage on success, NULL on error.

2.0

cmsStage” cmsStageAllocCLut16bitGranular(cmsContext ContextlD,
const cmsUInt32Number clutPoints|],
cmsUInt32Number inputChan,
cmsUInt32Number outputChan,
const cmsUInt16Number” Table);

Similar to cmsStageAllocCLut16bit, but it allows different granularity on each CLUT
dimension.

Parameters:
ContextID: Pointer to a user-defined context cargo.
ContextID: Pointer to a user-defined context cargo.
clutPoints[]: Array [inputChan] holding the number of nodes for each component.
inputChan: Number of input channels.
outputChan: Number of output channels.
Table: a pointer to a table of cmsUInt16Number, holding initial values for nodes. If
NULL the CLUT is initialized to zero.

Returns:
A pointer to a pipeline stage on success, NULL on error.

Pipelines i)

2.0

cmsStage” cmsStageAllocCLutFloatGranular(ecmsContext ContextlD,
const cmsUInt32Number clutPoints],

cmsUInt32Number inputChan,
cmsUInt32Number outputChan,
const cmsFloat32Number * Table);

Similar to cmsStageAllocCLutFloat, but it allows different granularity on each CLUT

dimension.

Parameters:
ContextID: Pointer to a user-defined context cargo.

clutPoints[]: Array [inputChan] holding the number of nodes for each component.

inputChan: Number of input channels.

outputChan: Number of output channels.
Table: a pointer to a table of cmsFloat32Number, holding initial values for nodes.

Returns:
A pointer to a pipeline stage on success, NULL on error.

2.0

cmsStage” cmsStageDup(cmsStage® mpe);

Duplicates a pipeline stage and all associated resources.

Parameters:
Mpe: a pointer to the stage to be duplicated.

Returns:
A pointer to a pipeline stage on success, NULL on error.

2.0

void cmsStageFree(cmsStage* mpe);

Destroys a pipeline stage object, freeing any associated resources. The stage should first
be unlinked from any pipeline before proceeding to free it.

Parameters:
mpe: a pointer to a stage object.

Returns:
None

Pipelines A5

2.0

cmsUInt32Number cmsStagelnputChannels(const cmsStage* mpe);

Returns the number of input channels of a given stage object.
Parameters:

mpe: a pointer to a stage object.

Returns:
Number of input channels of pipeline stage object.

cmsUInt32Number cmsStageOutputChannels(const cmsStage* mpe);

Returns the number of output channels of a given stage object.

Parameters:
mpe: a pointer to a stage object.

Returns:

Number of output channels of pipeline stage object.

cmsStageSignature cmsStageType(const cmsStage* mpe);

Returns the type of a given stage object, enumerated in Table 31
Parameters:

mpe: a pointer to a stage object.

Returns:
The type of a given stage object, enumerated in Table 31

Pipelines

2.13

cmsContext cmsGetStageContextID(const cmsStage® mpe);

Returns the context of a given stage object
Parameters:

mpe: a pointer to a stage object.

Returns:
The context of a given stage object

void* cmsStageData(const cmsStage* mpe);

Returns a pointer to the internal data stored in the context structure. This structure varies

according of the stage type. See typedefs for all core structures in Icms2_plugin.h

_cmsStageToneCurvesData
_cmsStageMatrixData
_cmsStageCLutData

Parameters:
mpe: a pointer to a stage object.

Returns:
The context of a given stage object

Notes:
Plug-ins may define new data types

177

Pipelines [il£s)

Sampling CLUT

Those functions are provided to populate CLUT stages in a way that is independent of the
number of nodes. The programmer has to provide a callback that will be invoked on each
CLUT node. LittleCMS does fill the In[] parameter with the coordinates that addresses the
node. It also fills the Out[] parameter with CLUT contents on the node, so this can be used
also to get CLUT contents after reading it from an ICC profile. In this case, a special flag can
be specified to make sure the CLUT is being accessed as read-only and not modified.

typedef cmsInt32Number (* cnsSAMPLER16)
(CMSREGISTER const cmsUInt16Number In[],
CMSREGISTER cmsUInt16Number Out][],
CMSREGISTER void * Cargo);

typedef cmsInt32Number (* cmsSAMPLERFLOAT)
(CMSREGISTER const cmsFloat32Number In[],
CMSREGISTER cmsFloat32Number Out[],
CMSREGISTER void * Cargo);

Use this flag to prevent changes being written to destination.

#define SAMPLER_INSPECT 0x01000000 |

cmsBool cmsStageSampleCLut16bit(cmsStage* mpe,
cmsSAMPLER16 Sampler,
void* Cargo,
cmsUInt32Number dwFlags);

Iterate on all nodes of a given CLUT stage, calling a 16-bit sampler on each node.

Parameters:
mpe: a pointer to a CLUT stage object.
Sampler: 16 bit callback to be executed on each node.
Cargo: Points to a user-supplied data which be transparently passed to the
callback.
dwFlags: Bit-field flags for different options. Only SAMPLER_INSPECT is currently
supported.

Returns:
TRUE on success, FALSE on error.

2.0

cmsBool cmsStageSampleCLutFloat(cmsStage™ mpe,
cmsSAMPLERFLOAT Sampler,
void* Cargo,
cmsUInt32Number dwFlags);

Parameters:
mpe: a pointer to a CLUT stage object.
Sampler: Floating point callback to be executed on each node.
Cargo: Points to a user-supplied data which be transparently passed to the
callback.
dwFlags: Bit-field flags for different options. Only SAMPLER _INSPECT is currently
supported.

Returns:
TRUE on success, FALSE on error.

Slicing space functions

Those functions do slice a multidimensional space into equally spaced steps and then
executes a callback on each division. Each component may be divided into different slices
(granularity). The sampler is identical to the callback used in cmsStageSampleCLut16bit,
but out parameter comes set to NULL since there is no table to populate. The callback type
is described in the above paragraph.

2.9

cmsBool cmsSliceSpace16(cmsUInt32Number ninputs,
const cmsUInt32Number clutPoints[],
cmsSAMPLER16 Sampler, void * Cargo);

Slices target space executing a 16 bits callback of type cmsSAMPLER16.

Parameters:
ninputs: Number of components in target space.
clutPoints[]: Array [nInputs] holding the division slices for each component.
Sampler: 16 bit callback to execute on each slice.
Cargo: Points to a user-supplied data which be transparently passed to the
callback.

Returns:
TRUE on success, FALSE on error.

179

Slicing space functions [k:{0)

2.0

cmsBool cmsSliceSpaceFloat(cmsUInt32Number ninputs,
const cmsUInt32Number clutPoints][],
cmsSAMPLERFLOAT Sampler, void * Cargo);

Slices target space executing a floating point callback of type cmsSAMPLERFLOAT.

Parameters:
ninputs: Number of components in target space.
clutPoints[]: Array [ninputs] holding the division slices for each component.
Sampler: Floating point callback to execute on each slice.
Cargo: Points to a user-supplied data wich be transparently passed to the callback.

Returns:
TRUE on success, FALSE on error.

Conclusion [kl

Conclusion

The canonical site for Little CMS is_https://www.littlecms.com, for suggestions and bug
reporting, please contact me at: info@littlecms.com

You can get additional information on Little CMS in the documents listed below:

e [Lijttle CMS Tutorial
e Little CMS Plug-In API

Thank you for using this Little Color Management System.

https://www.littlecms.com/

