(Q) Lil’s:llez

Plug-in API 2.18

https://www.littlecms.com

Copyright © 2026 Marti Maria Saguer, all rights reserved.

https://www.littlecms.com/

Introduction

Contents
INEFOAUCTION ... 4
Using plug-ins from the Core eNgiNe..........ccoooe i e 5
PlUG-IN PACKAGES......coiiiiiiiiiiiiiiii ettt 7
= 10 0] o] (PP 8
Multiple plug-ins with same entry point ... 9
Placing plug-ins in a separate DLL (WIindows® Only)ccccccocveeiieeeeciee e 9
o [1= g1 £ PSR 10
PIUGIN STIUCIUIE ... 10
Memory management PIUGIN.........coui e e e e e e e e e ar s 12
Tl (=Yg o ToTF= T To] TN o] [N o T T o 1 PURPPPPR 14
16 Dits INtErpOlation.ee e 16
Floating point interpolation.ooiii e 16
Interpolation ParamMeEtErs ... 17
Parametric CUrVES PlUG-iNcoooieiieeeeee e 19
[g g F= T =Y S (0T T o 22
JLIE= T 1 118 Lo Tt o PO PP 25
Tag type handler PIUG-iNooiiiiiiiiiiiiiiieeeeeee ettt 27
1] (=T 1 o] 0T o RPN 30
Support functions for intent pluG-iNSoouiiiiii i 31
S =T [33
Creating NEW STAQE tYPES .. .uuiiiiiiiiiiiiiiiiiiiiiiiiii bbb bbebe b baenannanennnes 33
=T LTSN o] (1T o TR 35
(@] 11401 7= 1 1To] TN o] 11 o T o TR 37
Full transform plug-in [2.04], [2.08]....cccoe oo 41
MUEEX PIUG-IN [2.06] ..o 45
Parallelization plug-in [2.14] ..o 47
10 o] oo] U g T 1o o < 48
PlUG-IN SUPPOIT AP ... 50
FL@ ¢ F=T g To | =T = SO PP PPPR P POPPPPPPPPPPT 50
Read/Write FUNCHONScooviiiiiiiiii e 51

Type base helper fUNCHONS.u e eeenennnnnennnnes 52

Introduction

Alignment & MISC. FUNCLONS.ooiiiiiiii e 53
Fixed point helper fUNCLIONS...........e e 54
Date/time helper fUNCHONS..........ooiiiii e 56
Error LOgging AP ... 57
Memory management APl e 58
Vector & Matrix AP 61

VECS VECIOIS ...ttt ettt e e e e et e e e e e e e e eeas 61

MAT 3 MALIICES. ..o 64
Message Digest FUNCHONSoouiiiiiii e 67

(070] g To1 [F1=110] o FUUTEUT TR 68

Introduction

Introduction

In computing, a plug-in consists of a computer program that interacts with a host to provide
a certain, usually very specific, function "on demand". One of the main improvements in
Little CMS 2.x is the ability to use such plug-in architecture. By using plug-ins you can use
the normal API to access customized functionality. Licensing is another compelling reason;
you can move all your intellectual property into plug-ins and be able to upgrade the core
Little CMS library, keeping it in the open source side.

There are 11 types of plug-ins currently supported:

e Memory management

e Interpolation

e Tone curve types

e Formatters

e Tag types

e Tags

¢ Rendering intents

e Multi processing elements
e Optimizations

e Full transform replacement
e Mutex

This manual details how to write any of those 11 types of plug-ins. It does not discuss how
to use them, as plug-ins are basically extensions of the base system and as such, works in
the same way.

The way Plug-in architecture is designed, hides the internal
implementation to the user. A plug-in user only sees a single object,
which is the entry point for all plug-in libraries. This is done in such way
for plug-in collections coming for 3™ parties: They publish the entry point,
and the users of those collections need only to “plug” this entry point into
the core engine to get the intended functionality.

Using plug-ins from the core engine

Using plug-ins from the core engine

Plug-ins are “plugged” to Little CMS when creating the contexts.

[2.6]

cmsContext cmsCreateContext(void* Plugin, void* UserData);

Creates a new context with optional associated plug-ins. Caller may specify an optional
pointer to user-defined data that will be forwarded to plug-ins and logger.

Parameters:
Plugin: Pointer to plug-in collection. Set to NULL for no plug-ins.

UserData: optional pointer to user-defined data that will be forwarded to plug-ins
and logger. Set to NULL for none.

Returns:
A valid cmsContext on success, or NULL on error.

Note: All memory used by this context is allocated by using the memory plugin, if present,
This includes the block for the context itself.

2.6

cmsBool cmsPluginTHR(cmsContext id, void* Plugin);

The user can install additional plug-ins to a yet existing context by using this function.

2.0

cmsBool cmsPlugin(void* Plugin);

This one installs plug-ins in the default context. Only useful when using Little CMS as a
static library. This function is deprecated, and the recommended way is by using contexts.

Using plug-ins from the core engine [

2.0

void cmsUnregisterPlugins(void);

This function returns Little CMS default context to its pristine default state, as no plug-ins
were declared. There is no way to unregister a single plug-in, as a single call to
cmsPlugin() function may register many different plug-ins simultaneously, so there is no
way to identify which plug-in to unregister.

[2.6]

void cmsUnregisterPluginsTHR(cmsContext ContextID);

This function is same as anterior, but operating in the giving context.

Using plug-ins from the core engine

Plug-in packages

Despite it is declared as a void pointer, cmsPlugln needs some structured data to deal
with. Let’s take a look on the internals of the structure accepted by cmsPlugin()

typedef struct _cmsPluginBaseStruct {

cmsUInt32Number Magic;
cmsUInt32Number ExpectedVersion;
cmsUInt32Number Type;

struct _cmsPluginBaseStruct® Next;

} cmsPluginBase;

Your package has to export a pointer to such structure. On depending on the plug-in type,
there may be some extra fields after this base.

For example, a “tag” plug-in definition has this structure:

typedef struct {
cmsPluginBase base;
cmsTagSignature Signature;
cmsTagDescriptor Descriptor;

} cmsPluginTag;

As you can see, the cmsPluginBase struct always begin the definition block.

Using plug-ins from the core engine [EI

Example:

Imagine you are a printer vendor and want to include in your profiles a private tag for
storing the ink consumption. So, you register a private tag with the ICC, and you get the
private signature "inkc". Ok, now you want to store this tag as a Lut16Type, so it will be
driven by PCS and will return one channel giving the relative ink consumption by color.
Writing a plug-in in Little CMS 2 will allow cmsReadTag and cmsWriteTag to deal with
your new data exactly as any other standard tag.

To do so, you have to fill a emsPluginTag structure to declare the plug-in. This structure
includes the base, which is common to all plug-ins:

cmsPluginTag plugin;

plugin.base.Magic = cmsPluginMagicNumber;
plugin.base.ExpectedVersion = 2000;
plugin.base.Type = cmsPluginTagSig;
plugin.base.Next = NULL;

That latter identifies your plug-in as "tag type". Now you have to set the additional fields
that only apply to “tag definition” plug-ins. This can be done with following code:

plugin.Signature = inkc_constant;
plugin.Descriptor.ElemCount = 1;
plugin.Descriptor.nSupportedTypes = 1;
plugin.Descriptor.SupportedTypes[0] = cmsSigLut16Type;

This adds some additional info about the type used by your tag:

e How many elements of that type the tag is going to hold (usually one)
¢ In how many different types the tag may come (again, usually one)
e And then the needed type(s).

That is all. You can “plug” the new functionality to Little CMS by calling:

cmsPlugin(&plugin);

And that is. Now Icms2 understand about “inkc” tags and can read and write them.

Using plug-ins from the core engine [EIE

Multiple plug-ins with same entry point

As a plug-in writer, you may want to encapsulate several plug-in in the same package.
This is easy with the way Little CMS deals with plug-ins. In the “Next” field of base plug-in,
you can place a pointer to the next plug-in you want to register:

cmsPluginTag plugin;

plugin.base.Magic = cmsPluginMagicNumber;
plugin.base.ExpectedVersion = 2000;
plugin.base.Type = cmsPluginTagSig;
plugin.base.Next = (cmsPluginBase*) &secondPlugin;

In this way, your package may have unlimited plug-ins, and all will be registered with a
single call to emsPlugin. Last plug-in in the chain must have a NULL in the “Next” field.

Placing plug-ins in a separate DLL (Windows® only)

The plug-in APl is exported by the main Icms2.dll using PASCAL convention. This is the
normal way DLL does work. That means, you can place your plug-in packages in a
separate DLL and therefore you can keep the standard, non-customized Little CMS DLL
safe for future upgrades. Of course you can also put the plug-ins in a single DLL, but
keeping both systems isolated can be handy. In this way Icms2.dll can be upgraded to a
new revision and your plug-in DLL, if properly written, will keep working. All the details are
handled by the header files. All what you have to do is to compile your plug-in DLL using
the CMS_DLL toggle, as plug-in package is basically a client of the core engine. When
placing plug-ins in a separate DLL, make sure to handle memory with the provided Plug-in
memory management API. Failure to do so may yield unexpected results.

Requirements

Requirements

Little CMS requires C99 to compile, and to write plug-ins your compiler should support
following include files (they are very common)

#include <stdlib.h>
#include <math.h>
#include <stdarg.h>
#include <memory.h>
#include <string.h>

You have not to include any of those files, just the file lcms2_plugin.h, which will take care
of including all necessary requirements.

#include “lcms2_plugin.h”

Plugin structure

Any plug-in should be declared with at least these common fields. On depending on the
type, additional fields would be required.

typedef struct _cmsPluginBaseStruct {

cmsUInt32Number Magic;
cmsUInt32Number ExpectedVersion;
cmsUInt32Number Type;

struct _cmsPluginBaseStruct* Next;

} cmsPluginBase;

Magic:

Identifies the structure as a Little CMS 2 plug-in. It must contain following value:

cmsPluginMagicNumber 0x61637070 ‘'acpp’

Plugin structure

ExpectedVersion:

The expected Little CMS version; 2040 in current release. Little CMS core will
accept plug-ins with expected version less or equal that the core version. If a plug-
in is marked for a version greater that the core, plug-in will be rejected. That means
downgrading core engine may disable certain plug-ins (as it should be).

Type:
It defines behaviour of plug-in. There are 10 plug-in types currently defined:

Type Hex ASCII
cmsPluginMemHandlerSig 0x6D656D48 | 'memH'
cmsPlugininterpolationSig 0x696E7048 | 'inpH'
cmsPluginParametricCurveSig 0x70617248 | 'parH’
cmsPluginFormattersSig 0x66726D48 | 'frmH
cmsPluginTagTypeSig 0x74797048 | 'typH'
cmsPluginTagSig 0x74616748 | 'tagH'
cmsPluginRenderingIntentSig 0x696E7448 | 'intH'
cmsPluginMultiProcessElementSig | 0x6D706548 | 'mpeH'
cmsPluginOptimizationSig 0x6F707448 | 'optH'
cmsPluginTransformSig 0x7A666D48 | 'xfmH'
Next:

Points to the next plug-in header in multi plug-in packages. Set it to NULL to mark
end of chain.

Memory management plugin

Memory management plugin

By using this plug-in type, a programmer can override memory management done by Little
CMS. Multiple occurrences of this type of plug-in are allowed, but each time a plug-in of
this type is set, it replaces the old one.

Type:

cmsPluginMemHandlerSig 0x6D656D48 'memH'

Plug-in header structure:

typedef void* (* _cmsMallocFnPtrType)(cmsContext ContextID, cmsUInt32Number size);
typedef void (* _cmsFreeFnPtrType)(cmsContext ContextID, void *Ptr);
typedef void* (* _cmsReallocFnPtrType)(cmsContext ContextID, void* Ptr, cmsUInt32Number NewSize);

typedef void* (* _cmsMalloZerocFnPtrType)(cmsContext ContextlD, cmsUInt32Number size);

typedef void* (* _cmsCallocFnPtrType)(cmsContext ContextID, cmsUInt32Number num,
cmsUInt32Number size);

typedef void* (* _cmsDupFnPtrType)(cmsContext ContextID, const void* Org, cmsUInt32Number size);

typedef void* (* _cmsNonContextualMallocFnPtrType)(void* UserData, cmsUInt32Number size);
typedef void (* _cmsNonContextualFreeFnPtrType)(void* UserData, void *Ptr);

typedef struct {
cmsPluginBase base;

/I Required

_cmsMallocFnPtrType MallocPtr;
_cmsFreeFnPirType FreePtr;
_cmsReallocFnPtrType ReallocPtr;

/I Optional

_cmsMalloZerocFnPtrType MallocZeroPtr;
_cmsCallocFnPtrType CallocPtr;
_cmsDupFnPtrType DupPtr;

/I Special functions to create contexts (Icms 2.6 required)
_cmsNonContextualMallocFnPtrType NonContextualMalloc;
_cmsNonContextualFreeFnPtrType NonContextualFree;

} cmsPluginMemHandler;

Setting optional function pointers to NULL forces Little CMS to use MallocPtr, FreePtr
and ReallocPtr functions for all operation. If you provide all set of functions, Little CMS will
use the optional memory operations when possible. This works in such way to allow
optimizations when using advanced memory managers. All functions get called with a
ContextID that identifies the calling environment. It may be zero on certain special cases.
This ContextID is provided by the user when calling Little CMS API functions.

Memory management plugin

Plug-ins should NOT call those functions directly. They should manage memory by calling
the plug-in memory management API, described below. This APl does call this plug-in to
do its functionality. Changing memory managers with ongoing operations may yield
unexpected results.

Example:

#include “lcms2_plugin.h”

static void* my_malloc(cmsContext ContextID, cmsUInt32Number size)

{
}

static void my_free(cmsContext ContextID, void *Ptr)

{
}

static void* my_realloc(cmsContext ContextID,
void *Ptr, cmsUInt32Number new_size)
{

}

cmsPluginMemHandler MemHandler = {{
cmsPluginMagicNumber,
2000,
cmsPluginMemHandlerSig,
NULL
b
my_malloc,
my_free,
my_realloc,
NULL,
NULL,
NULL };

return malloc(size);

free(Ptr);

return realloc(Ptr, new_size);

This example changes the internal Little CMS memory management to use plain C
malloc(), free() and realloc() functions. This is indeed a bad idea, as the internal memory
manager does some extra checks to make sure no overflow exploits are being tried, but
you may want to use this capability to do other things, like use your own memory manager
or to access out of board memory in embedded systems. In the test bed application, a
customized memory manager which adds extra levels of check is being used. You can
refer to this program for a more sophisticated example of memory manager replacement.

Interpolation plug-in

Interpolation plug-in

By using this plug-in type, programmer may change or increase the interpolation done by
Little CMS. To fully understand what means this, it is necessary to clarify some concepts
now.

Little CMS internal operation is based on pipelines. Each pipeline may contain a number
of stages. Those stages may be of several kinds, and there are two kinds which need
interpolation. One is tone curves, where a 1D curve is applied to each channel. The
second kind is multidimensional lookup tables (CLUT) where a number of channels are
interpolated across a multidimensional grid. In each one of those cases, the final value is
interpolated across a number of nodes. By using the interpolation plug-in you can change
the algorithm that applies in such cases. Please note that does NOT apply to the whole
pipeline, only to the specific steps that are using interpolation. If you want to accelerate the
pipeline evaluation by using some sort of ASIC or GPU, that is certainly possible by using
the optimization or the applier plug-ins, but not changing the interpolation.

The structure is based on the idea of interpolator factory. That is, the programmer supplies
a call back function. When Little CMS needs to do some interpolation, it calls this function
specifying the number of input and output channels, the base type (16 bits or floating
point) and gives some hints about the use it wants to do to the routine, like to use a
trilinear-like. The factory then should return a function pointer if the plug-in implements this
particular interpolation or NULL to regret. In this case, the default interpolator provided by
Little CMS will be used instead. Only one factory can be set at time. Further calls to
cmsPlugin with this type will replace the behavior of previous plug-in. Interpolators have
no states and no memory, and therefore cannot hold private data.

Type:

cmsPlugininterpolationSig 0x696E7048 'inpH'

There is a limitation on the maximum input dimensions:

#define MAX_INPUT_DIMENSIONS 15

That is indeed necessary because tables of more than those dimensions are so huge that
grown out of control when node count increases.

Interpolation plug-in

Plug-in header structure:

typedef struct {
cmsPluginBase base;
cmsinterpFnFactory InterpolatorsFactory;

} cmsPlugininterpolation;

This is the definition of the factory

cmsinterpFunction (* cmsinterpFnFactory)(cmsUInt32Number ninputChannels,
cmsUInt32Number nOutputChannels,
cmsUInt32Number dwFlags);

And here are the possible flags

#define CMS_LERP_FLAGS_16BITS 0x0000
#define CMS_LERP_FLAGS_FLOAT 0x0001
#define CMS_LERP_FLAGS_TRILINEAR 0x0100

Since the interpolators may have different parameter types on float and 16 bits, the factory
returns a union of pointers, although at the end this behaves just a single pointer.

typedef union {
_cmsinterpFn16 Lerp16;
_cmsinterpFnFloat LerpFloat;
} cmsinterpFunction;

Interpolators for 16 bits and floating point are very alike. They have, however, some
differences due the fact 16 bits are primarily intended for performance (throughput)

Interpolation plug-in

16 bits interpolation.

The returned function has to perform precision-limited interpolation and is supposed to be
quite fast. Reference Implementations are tetrahedral or trilinear, and plug-ins may choose
to implement any other interpolation algorithm.

void (* _cmslinterpFn16)(CMSREGISTER const cmsUInt16Number Input(],
CMSREGISTER cmsUInt16Number Output(],
CMSREGISTER const struct _cms_interp_struc* p);

Floating point interpolation.

The returned function has to perform full precision interpolation using floats. This is not a
time critical function. Reference Implementations are tetrahedral or trilinear, and plug-ins
may choose to implement any other interpolation algorithm.

void (* _cmsinterpFnFloat)(cmsFloat32Number const Input(],
cmsFloat32Number Output][],
const struct _cms_interp_struc* p);

Interpolation plug-in

Interpolation parameters

When an interpolator is called, Little CMS provides a pointer to several pre-computed
parameters to help the interpolation task. Is up to the interpolator to use such parameters
or ignore them.

typedef struct _cms_interp_struc {
cmsContext ContextID;

cmsUInt32Number dwFlags;

cmsUInt32Number ninputs;

cmsUInt32Number nOutputs;

cmsUInt32Number nSamples[MAX_INPUT_DIMENSIONS];
cmsUInt32Number Domain[MAX_INPUT_DIMENSIONS];
cmsUInt32Number opta[MAX_INPUT_DIMENSIONS];
const void * Table;

cmslinterpFunction Interpolation;

} cmslinterpParams;

dwFlags : A copy of the flags specified when requesting the interpolation
ninputs, nOutputs: Channels on input and output.

nSamples[]: Number of grid points in each input dimension

Domain[]: Number of grid points minus one in each input dimension.

Opta[]: The result of multiplying Domain[n]*Opta[n-1] (offset in the table in base
type).

Table: Points to a portion of memory holding the table of gridpoints
Interpolation: points to the interpolator itself

Example:

Interpolation plug-in

void LinLerp1Dfloat(const cmsFloat32Number Value[],
cmsFloat32Number Output[],
const cmsinterpParams* p)

cmsFloat32Number y1, y0;

cmsFloat32Number val2, rest;

int cellO, cell1;

const cmsFloat32Number*® LutTable = p ->Table;

if (Value[0] == 1.0) {
Output[0] = LutTable[p -> Domain[0]]; return; }

val2 = p -> Domain[0] * Value][0];
cell0 = (int) floor(val2);

cell1 = (int) ceil(val2);

rest = val2 - cellO;

y0 = LutTable[cell0] ;

y1 = LutTable[cell1] ;

Output[0] = yO + (y1 - y0) * rest;
}

cmsinterpFunction

my_Interpolators_Factory(cmsUInt32Number ninputChannels,
cmsUInt32Number nOutputChannels,
cmsUInt32Number dwFlags)

cmslinterpFunction Interpolation;
cmsBool IsFloat = (dwFlags & CMS_LERP_FLAGS_FLOAT);

memset(&Interpolation, 0, sizeof(Interpolation));
if (nInputChannels == 1 && nOutputChannels == 1 && IsFloat) {

Interpolation.LerpFloat = LinLerp1Dfloat;
}

return Interpolation;

}

cmsPlugininterpolation Plugin = {
{ cmsPluginMagicNumber,
2000,
cmsPlugininterpolationSig,
NULL },
my_Interpolators_Factory };

Parametric curves plug-in

Parametric curves plug-in

By using this plug-in type, programmer may increase or replace the list of supported
parametric tone curves. You <can access this new type by using
cmsBuildParametricToneCurve, as well as “curves” pipeline stage. Each call to
cmsPlugin with this type will add new curves to the list if the type ID is not used. If the
type ID already exists, the tone curve implementation is replaced.

Type:
‘ cmsPluginParametricCurveSig 0x70617248 'parH' |

There is a limit on the number of curves a single plug-in can describe:
| #define MAX_TYPES_IN_LCMS_PLUGIN 20 |

If you need more curves types, you can use two linked plug-ins, as described above.

Structure:

typedef struct {
cmsPluginBase base;

cmsUInt32Number nFunctions;
cmsUInt32Number FunctionTypes[MAX_TYPES IN_LCMS PLUGIN]J;
cmsUInt32Number ParameterCountMAX_TYPES_IN_LCMS_PLUGIN];

cmsParametricCurveEvaluator Evaluator;

} cmsPluginParametricCurves;

Evaluator:
callback for user-supplied parametric curves.

May implement more than one type, and have to implement evaluation of the curve in
both, forward and reverse directions.

cmsFloat64Number (* cmsParametricCurveEvaluator)
(cmsInt32Number Type,
const cmsFloat64Number Params[10],
cmsFloat64Number R);

Parametric curves plug-in

Note the Type parameter is described as signed. A negative type means same function
but analytically inverted. Max. number of params is 10. Each parametric curve plug-in may
implement an arbitrary number of curve types, up to 20:

Since Little CMS can work as unbounded CMM, the domain of R is effectively from minus
infinite to infinite. However, the normal, in-range domain is 0...1.0, so you have to
normalize your function to get values of R = [0...1.0] and deal with remaining cases if you
want your function to be able to work in unbounded mode.

FunctionTypes:
Id’s for each parametric curve described by the plug-in
ParameterCount.

Number of parameters for each parametric curve described by the plug-in

Example:

Parametric curves plug-in

#include “lcms2_plugin.h”
#define TYPE_SINH 1000

static

cmsFloat64Number my_fns(cmsint32Number Type,
const cmsFloat64Number Params|],
cmsFloat64Number R)

switch (Type) {

case TYPE_SINH:
Val = Params[0]* sinh(R);
break;

case -TYPE_SINH:
Val = asinh(R) / Params|[0];
break;

}

return Val;

}

cmsPluginParametricCurves NewCurvePlugin = {

cmsPluginMagicNumber,

2000,
cmsPluginParametricCurveSig,
NULL
b

1,
{TYPE_SINH},
{1},

my_fns};

This example adds a new parametric curve under the ID number of 1000. This is a basic
hyperbolic function, the hyperbolic sine "sinh" multiplied by the first parameter. Math
expression of function is f(x) = p, sinh(x) the implementation adds an analytical reversing
of the curve when parametric curve is requested with a negative id.

Formatters Plug-in

Formatters Plug-in

Little CMS can handle a lot of formats of image data. For describing such formats, Little
CMS does use a 32-bit value, referred below as format specifier. Each bit in those 32 bits
has specific meaning:

MOTTTTTUYFP XS EEE CCCC BBB

M: Premultiplied alpha channel

: Reserved, internal use only

: Pixel type

: Flavor 0=MinlsBlack(Chocolate) 1=MinlsWhite(Vanilla)

: Planar? 0=Chunky, 1=Planar

: swap 16 bps endianess?

: Do swap? ie, BGR, KYMC

: Extra samples

: Channels (Samples per pixel)

W OIMwX T m-0

: bytes per sample

Y: Swap first - changes ABGR to BGRA and KCMY to CMYK

This plug-in adds new format handlers, replacing them if they already exist.

Type:

cmsPluginFormattersSig 0x66726D48 'frmH'

Plug-in may implement an arbitrary number of formatters by implementing a format
factory.

Structure:

typedef struct {
cmsPluginBase base;
cmsFormatterFactory FormattersFactory;

} cmsPluginFormatters;

Formatters Plug-in

typedef enum { cmsFormatterinput=0,
cmsFormatterOutput=1 } cmsFormatterDirection;

#define CMS_PACK_FLAGS_16BITS 0x0000
#define CMS_PACK_FLAGS_FLOAT 0x0001

Factory callback:

cmsFormatter (* cmsFormatterFactory)(cmsUInt32Number Type,
cmsFormatterDirection Dir,
cmsUInt32Number dwFlags);

The factory have to return a cmsFormatter type. This type holds a pointer to a formatter
that can be either 16 bits or 32 bit float.

typedef union {

cmsFormatter16 Fmt16;
cmsFormatterFloat FmtFloat;

} cmsFormatter;

Formatters dealing with floats (bps = 4) or double (bps = 0) types are requested via
FormatterFloat callback. Others come across Formatter16 callback.

cmsUInt8Number* (* cmsFormatter16)(
CMSREGISTER struct _cmstransform_struct* CMMcargo,
CMSREGISTER cmsUInt16Number Values]],
CMSREGISTER cmsUInt8Number* Buffer,
CMSREGISTER cmsUInt32Number Stride);

cmsUInt8Number* (* cmsFormatterFloat)
(struct _cmstransform_struct®* CMMcargo,
cmsFloat32Number Values]],
cmsUInt8Number* Buffer,
cmsUInt32Number Stride);

Formatters Plug-in

Example:

cmsUInt8Number* my_Unroll8(struct _cmstransform_struct® nfo,
CMSREGISTER cmsUInt16Number win[],
CMSREGISTER cmsUInt8Number* accum,
CMSREGISTER cmsUInt32Number Stride)

win[0] = accum]0]) << 8;

win[1] = (accum[1] + 128) << 8;
win[2] = (accum[2] + 128) << 8§;
return accum + 3;

}

cmsFormatter my FormatterFactory(cmsUInt32Number Type,
cmsFormatterDirection Dir,
cmsUInt32Number dwFlags)

cmsFormatter Result = { NULL };

if (Type == TYPE_My_Lab) &&
I(dwFlags & CMS_PACK_FLAGS_FLOAT) &&
(Dir == cmsFormatterinput)) {
Result.Fmt16 = my_Unroll8;

}
return Result;
}
cmsPluginFormatters Plugin = { {cmsPluginMagicNumber,
2000,
cmsPluginFormattersSig,
NULL},

my_FormatterFactory };

This example implements decoding a new format of Lab values. The format comes as L
[0..FF] and a and b as signed chars.

Tag plug-in

Tag plug-in

This is the tag plugin, which identifies new tags with existing types. This plug-in has been
discussed as an example at the beginning of this document.

cmsPluginTagSig 0x74616748 'tagH'

Each Plug-in implements a single tag:

typedef struct {
cmsPluginBase base;

cmsTagSignature Signature;
cmsTagDescriptor Descriptor;

} cmsPluginTag;

This function should return the desired type for this tag, given the version of profile and the
data being serialized.

typedef struct {

cmsUInt32Number ElemCount; /I If this tag needs an array
/ how many elements should keep

/I For reading.
cmsUInt32Number nSupportedTypes; // In how many types this tag can come

cmsTagTypeSignature SupportedTypes[MAX_TYPES IN_LCMS_PLUGIN];

/I For writting
cmsTagTypeSignature (* DecideType)(double ICCVersion, const void *Data);

} cmsTagDescriptor;

DecideType: Callback to select the type based on the version of the ICC profile. It got
called on writing operations. ‘data’ is a pointer to the tag contents, i.e., the data supplied by
the user to cmsWriteTag().

Example:

Tag plug-in

#define inkc_constant 0x696E6B43

cmsPluginTag plugin = {
{cmsPluginMagicNumber,
2000,
cmsPluginTagSig, NULL},
{inkc_constant,

1, 1, {cmsSigLut16Type}, NULL}

%

Tag type handler plug-in

Tag type handler plug-in

Tag type plug-in complements tag plug-in by adding new types. Types are responsible of
the structure returned when cmsReadTag is called. Each type is free to return anything it
wants, and it is up to the caller to know in advance what is the type contained in the tag.

Type:

cmsPluginTagTypeSig 0x74797048 'typH'

Each plug-in implements a single type

typedef struct {

cmsPluginBase base;
cmsTagTypeHandler Handler;

} cmsPluginTagType;

To add a new type, programmer has to implement several callbacks for reading, writing,
duplicating and setting free the in-memory representation of the type. When designing a
new type, the first step should be to create a structure to hold the representation of data.
This structure may be the same as used to serialize on disk, but usually that is not the
case. Once the programmer has written all callback functions, she has to fill the handler
structure with pointers to those routines.

There is a copy of ContextID in the tag type handler structure. This member is there for
simplicity sake, and the plug-in developer may read this value, but needs not to initialize it.
Little CMS will set this member to proper value when invoking the plug-in.

Tag type handler plug-in

The type handler structure:

typedef struct _cms_typehandler_struct {
cmsTagTypeSignature Signature; // The signature of the type

/I Allocates and reads items

void * (* ReadPtr)(struct _cms_typehandler_struct® self,
cmsIOHANDLER* o,
cmsUInt32Number® nltems,
cmsUInt32Number SizeOfTag);

/[l Writes n ltems

cmsBool (* WritePtr)(struct _cms_typehandler_struct* self,
cmsIOHANDLER* o,
void* Ptr,
cmsUInt32Number nltems);

/I Duplicate an item or array of items

void* (* DupPtr)(struct _cms_typehandler_struct* self,
const void *Ptr,
cmsUInt32Number n);

/I Free all resources
void (* FreePtr)(struct _cms_typehandler_struct® self, void *Ptr);

/I The calling thread
cmsContext ContextID;

} cmsTagTypeHandler;

Signature: Identifies the type being implemented by the plug-in.

ReadPtr: Pointer to read function.

WritePtr: Pointer to write callback

DupPtr: Pointer to Duplicate callback

FreePtr: Pointer to Free callback

ContextID: (ReadOnly) contains the context for the last function accessing the plug-in

Tag type handler plug-in

Example:

void *Type_int_Read(struct _cms_typehandler_struct® self,
cms|OHANDLER® io,
cmsUInt32Number* nltems,
cmsUInt32Number SizeOfTag)

int* Ptr = (int*) _cmsMalloc(self ->ContextID, sizeof(int));
if (Ptr == NULL) return NULL,;

if (I_cmsReadUInt32Number(io, Ptr)) return NULL;
*nltems = 1;

return Ptr;

}

cmsBool Type_int Write(struct _cms_typehandler_struct® self,
cmsIOHANDLER* io,
void* Ptr, cmsUInt32Number nltems)

{
}

void* Type_int_Dup(struct _cms_typehandler_struct* self,
const void *Ptr, cmsUInt32Number n)

return _cmsWriteUInt32Number(io, *(cmsUInt32Number*) Ptr);

{
return _cmsDupMem(self ->ContextID, Ptr, n * sizeof(int));
}
void Type_int_Free(struct _cms_typehandler_struct* self,
void* Ptr)
{
_cmsFree(self ->ContextID, Ptr);
}
cmsPluginTagType Plugin = { {cmsPluginMagicNumber,
2000,
cmsPluginTagTypeSig,
NULL},
{ SigIntType,

Type_int Read,
Type_int_Write,
Type_int_Dup,
Type_int_Free,
NULL
h

Intent plug-in

Intent plug-in

This plug-in implements new rendering intents. To do so, the callback has to join all
profiles specified in the array in a single pipeline doing any necessary adjustments. Any
custom intent in the chain redirects to the custom callback. If more than one custom intent
is found, the one located first is invoked. Usually users should use only one custom intent,
s0 mixing custom intents in same multiprofile transform is not supported.

cmsPluginRenderingintentSig 0x696E7448 'intH'

Each plug-in defines a single intent number.

typedef struct {
cmsPluginBase base;
cmsUInt32Number Intent;
cmslintentFn Link;

char Description[256];

} cmsPluginRenderinglntent;

Plug-in has to specify a linker callback that accepts a chain of profiles and return a pipeline
implementing the new intent. All significant modificators are passed as parameters.

cmsPipeline* (* cmsintentFn)(cmsContext ContextID,
cmsUInt32Number nProfiles,
cmsUInt32Number Intents[],
cmsHPROFILE hProfiles[],
cmsBool BPCJ],
cmsFloat64Number AdaptationStates]],
cmsUInt32Number dwFlags);

Intent plug-in

Support functions for intent plug-ins

The default ICC intents (perceptual, saturation, rel.col and abs.col)

2.0

cmsPipeline* _cmsDefaultiCCintents(cmsContext ContextID,
msUInt32Number nProfiles,
cmsUInt32Number Intents]],
cmsHPROFILE hProfiles]],
cmsBool BPCJ],
cmsFloat64Number AdaptationStates]],
cmsUInt32Number dwFlags);

This function implements the standard ICC intents perceptual, relative colorimetric,
saturation and absolute colorimetric. Can be used as a basis for custom intents.

Parameters:
ContextID: Pointer to a user-defined context cargo.

nProfiles: Number of profiles in the chain

Intents[]: Intent to apply on each profile to profile joint.

hProfiles[]: Handles to open profiles

BPCJ]: Array of black point compensation states for each profile to profile joint

AdaptationStates][]: Array of observer adaptation states for each profile to profile
Joint.

dwFlags: color transform flags (see Little CMS API for further details)

Returns:

A pointer to a newly created pipeline holding the color transform on success, NULL
on error.

Intent plug-in

Example:

cmsPipeline* MyNewlntent(cmsContext ContextlD,
cmsUInt32Number nProfiles,
cmsUInt32Number Thelntents],
cmsHPROFILE hProfiles]],
cmsBool BPC]],
cmsFloat64Number AdaptationStates]],
cmsUInt32Number dwFlags)

{
cmsPipeline* Result;
cmsUInt32Number ICClntents[256];
cmsUInt32Number i;

for (i=0; i < nProfiles; i++)
ICClntents[i] = (Thelntents[i] == 300) ? INTENT_PERCEPTUAL :
Thelntents]i];

if (cmsGetColorSpace(hProfiles[0]) != cmsSigGrayData ||
cmsGetColorSpace(hProfiles[nProfiles-1]) = cmsSigGrayData)
return _cmsDefaultlCCintents(ContextID, nProfiles,
ICClntents, hProfiles,
BPC, AdaptationStates,
dwFlags);

Result = cmsPipelineAlloc(ContextID, 1, 1);
if (Result == NULL) return NULL;

cmsPipelinelnsertStage(Result, cmsAT_BEGIN,
cmsStageAllocldentity(ContextID, 1));

return Result;

}

cmsPluginRenderingintent RIPlugin =
{cmsPluginMagicNumber,
2000,
cmsPluginRenderinglntentSig,
NULL},
300,
MyNewIntent,
“bypass gray to gray rendering intent” };

This example creates a new rendering intent, at intent number 300, that is identical to
perceptual intent for all color spaces but gray to gray transforms, in this case it bypasses
the data. Note that it has to clear all occurrences of intent 300 in the intents array to avoid
infinite recursion.

Stages

Stages

When dealing with pipelines, there is the possibility for the programmer to create new,
customized stages that cannot be modeled by using any of the yet existing steps.
Additionally, there is a plug-in type that allows saving such user defined stages as multi
profile elements in DToB/BToD tags.

Creating new stage types
To create a new Stage type, following function may be used:

cmsStage* _cmsStageAllocPlaceholder(cmsContext ContextlD,
cmsStageSignature Type,
cmsUInt32Number InputChannels,
cmsUInt32Number OutputChannels,
_cmsStageEvalFn EvalPtr,
_cmsStageDupElemFn DupElemPtr,
_cmsStageFreeElemFn FreePtr,
void* Data);

Parameters:

ContextID: Pointer to a user-defined context cargo.

Type: Identifier for the new stage type.

InputChannels, OutputChannels: Number of channels for this stage.
EvalPtr: Callback to evaluate the stage.

DupElemPtr: If user data is being used, callback to duplicate the data.
FreePtr: If user data is being used, callback to set data free.

Data: Pointer to user-defined data or NULL if no data is needed.

Returns:
A pointer to the newly created stage on success, NULL on error.

The Stage element can accept private data. If so, you need to supply callback functions to
duplicate and free private data.

typedef void (* _cmsStageEvalFn) (const cmsFloat32Number In[],
cmsFloat32Number Out[],
const cmsStage® mpe);
typedef void*(* _cmsStageDupElemFn) (cmsStage* mpe);

typedef void (* _cmsStageFreeElemFn) (cmsStage* mpe);

Example:

Stages

void EvaluateNegate(const cmsFloat32Number In[],
cmsFloat32Number Oult[],
const cmsStage *mpe)

Out[0] = 1.0 - In[O];
Out[1] = 1.0 - In[1];
Out[2] = 1.0 - In[2];
}

#define SigNegateType ((cmsStageSignature)0x6E202020)

cmsStage* StageAllocNegate(cmsContext ContextID)
{
return _cmsStageAllocPlaceholder(ContextlD,
SigNegateType, 3, 3, EvaluateNegate,

NULL, NULL, NULL);

This example creates a stage that reverses the input (negative). It works on 3 2 3

channels.

Stages

Stages plug-in.

This plug-in type allows programmer to add new multi-process elements in the MPE tag,
and in this way extend the types documented in “Floating-Point Device Encoding Range”
addendum to ICC spec 4.2.

Using this plug-in allows such new stages to be stored on profiles.

Type:

cmsPluginMultiProcessElementSig 0x6D706548 'mpeH'

Plug-in structure:

typedef struct {
cmsPluginBase base;
cmsTagTypeHandler Handler;

} cmsPluginMultiProcessElement;

To describe the serialization, the same structure as tag type handler is being used,
although there are some differences:

- DupPtr and FreePtr of cmsTagTypeHandler are not used and have to be set to
NULL.
- ReadPtr must call cmsStageAllocPlaceholder to create the stage
- WritePtr can access the stage internals by using all cmsStage functions.
o cmsStagelnputChannels
o cmsStageOutputChannels
o cmsStageType
o cmsStageData

Stages

Example (as a continuation of previous sample):

void *Type_negate Read(struct _cms_typehandler_struct® self,
cms|OHANDLER® io,
cmsUInt32Number* nltems,
cmsUInt32Number SizeOfTag)

cmsUInt16Number Chans;
if (I_cmsReadUInt16Number(io, &Chans)) return NULL;
if (Chans != 3) return NULL;

*nltems = 1;
return StageAllocNegate(self -> ContextID);
}

cmsBool Type negate Write(struct _cms_typehandler_struct® self,
cmsIOHANDLER* io,
void* Ptr, cmsUInt32Number nltems)

if (I_cmsWriteUInt16Number(io, 3)) return FALSE;
return TRUE;

}

cmsPluginMultiProcessElement Plugin = {

{cmsPluginMagicNumber,

2000,

cmsPluginMultiProcessElementSig,

NULL},

{ SigNegateType
Type_negate Read,
Type_negate Write,
NULL,

NULL,
NULL

1

This example creates a new multi-processing element that saves our “negate” stage on
DToB/BToD tags. To do so, cmsWriteTag() should be called with a pipeline containing
“negate” stages.

Optimization plug-in.

Optimization plug-in.
Using this plug-in, additional optimization strategies may be implemented.

To implement transforms, Little CMS does create chains of operators by using pipelines.
Once created, those pipelines are passed to the optimization engine to remove
redundancies and perform any optimizations that would increase the
performance/throughput of the pipeline. The optimization engine consist on series of
algorithms that are applied to the pipeline chain, if suitable. By using optimization plug-in, a
programmer can add new optimization algorithms to the existing list. Formats suitable for
optimization are 8 and 16 bits. No optimization is possible on floating-point data.

The optimization algorith can decide to implement the evaluation of resulting pipeline in
any way it wants. To do so, it has to register a specialized callback that would be
responsible of evaluating the optimized version of LUT. This callback has this form:

cmsOPTeval16Fn:

void <OptimizationCallback>(CMSREGISTER const cmsUInt16Number In[],
CMSREGISTER cmsUInt16Number Out]],
CMSREGISTER const void* Data);

It is also posible to allocate and maintain an amount of user-supplied data, used only by
the optimization callback. The plug-in writer, then, have to supply two additional callbacks.
One for duplicating this data and another to free any resource associated with this data.

typedef void (* _cmsFreeDataFn)(cmsContext ContextID, void* Data);

typedef void* (* _cmsDupUserDataFn)(cmsContext ContextlD, const void* Data);

Those last functions are optional, and only required if the optimization callback is using
private data. It is the optimization algorithm which have to setup the optimized callbacack
and possible user defined data. For that purpose, there is a specialized function:

Optimization plug-in.

2.0

void _cmsPipelineSetOptimizationParameters (cmsPipeline* Lut,
_cmsOPTeval16Fn Eval16,
void* PrivateData,
_cmsFreeUserDataFn FreePrivateDataFn,
_cmsDupUserFn DupPrivateDataFn);

Set the optimization parameters for a given pipeline. Private data may be NULL, and that
means the optimized callback needs no additional data. If not NULL, the Free and Dup
callbacks must be specified as well.

Parameters:

Lut: Pipeline to be optimized

Eval16: User-supplied callback for fast evaluation of pipeline

PrivateData: Initial private data, NULL if not used.

FreePrivateDataFn: User-supplied callback to free private data, NULL if not used.
PrivateDataFn: User-supplied callback to duplicate private data, NULL if not used.

Returns:
None

The optimization plug-in exports the optimizer algorith as a function callback. That function
have to return TRUE if any optimization is done on the LUT, this terminates the
optimization search. Or FALSE if it is unable to optimize and want to give a chanceto the
rest of optimization algorithms.

Type:

cmsPluginOptimizationSig 0x6F707448 'optH'

Structure:

typedef struct {

cmsPluginBase base;
_cmsOPToptimizeFn OptimizePtr; // Optimization algorithm entry point

} cmsPluginOptimization;

Optimization plug-in.

Optimization algorithm callback:

cmsBool (* _cmsOPToptimizeFn)(cmsPipeline* Lut,
cmsUInt32Number Intent,
cmsUInt32Number* InputFormat,
cmsUInt32Number* OutputFormat,
cmsUInt32Number* dwFlags);

This function may be used to set the optional evaluator and a block of private data. If
private data is being used, an optional duplicator and free functions should also be
specified in order to duplicate the pipeline construct. Use NULL to inhibit such functionality.

Optimization plug-in.

Example:

cmsBool MyOptimize(cmsPipeline™ Lut,
cmsUInt32Number Intent,
cmsUInt32Number® InputFormat,
cmsUInt32Number® OutputFormat,
cmsUInt32Number* dwFlags)

cmsStage* mpe;

/I Only curves in this LUT?
for (mpe = cmsPipelineGetPtrToFirstStage(*Lut);
mpe !'= NULL;
mpe = cmsStageNext(mpe)) {
if (cmsStageType(mpe) != cmsSigCurveSetElemType)
return FALSE;

}

*dwFlags |= cmsFLAGS NOCACHE;
_cmsPipelineSetOptimizationParameters(*Lut,
FastEvaluateCurves, NULL, NULL, NULL);

return TRUE;
}

cmsPluginOptimization Plugin = {
{cmsPluginMagicNumber,
2000,
cmsPluginOptimizationSig,
NULLY},
MyOptimize};

This example detects whatever the pipeline contains only curves and in this case provides
a hypothetical fast evaluator (not listed). Note that the plug-in also inhibits the 1-pixel
cache, because the “FastEvaluateCurves” function is supposed to be faster than caching.

Full transform plug-in [2.04], [2.08]

Full transform plug-in [2.04], [2.08]

Using this plug-in, a programmer can get replace completely the color transform logic. The
plug-in can supply a callback to be used when user calls cmsDoTransform() or
cmsDoTransformLineStride()

Type:

cmsPluginTransformSig 0x7A666D48 'xfmH'

Structure:

typedef struct {
cmsPluginBase base;

/I Transform entry point factory
_cmsTransformFactory Factory;

} cmsPluginTransform,;

It is also posible to allocate and maintain an amount of data, used only by the transform
callback supplied by the plug-in. The plug-in writer, then, have to provide an additional
callback to free any resource associated with this data. This callback type is used in other
plug-ins as well.

typedef void (* _cmsFreeUserDataFn)(cmsContext ContextID, void* Data);

Such data is optional. Use NULL when the plug-in callback does not need private data.

Full transform plug-in [2.04], [2.08]

Callbacks:

typedef cmsBool (* _cmsTransformFactory)(_cmsTransform2Fn* xformPtr,
void** UserData,
_cmsFreeUserDataFn* FreePrivateDataFn,
cmsPipeline™ Lut,
cmsUInt32Number* InputFormat,
cmsUInt32Number* OutputFormat,
cmsUInt32Number* dwFlags);

The function is invoked for each new color transform cretead after plug-in registration. The
factory can accept to provide transform entry points if the actual transform parameters
meets its requeriments. The factory can also change the actual transform parameters after
it has accepted the task.

2.5

typedef void (*_cmsTransform2Fn)(struct _cmstransform_struct *CMMcargo,
const void* InputBuffer,
void* OutputBuffer,
cmsUInt32Number PixelsPerLine,
cmsUInt32Number LineCount,
const cmsStride* Stride);

typedef struct {

cmsUInt32Number BytesPerLineln;
cmsUInt32Number BytesPerLineOut;
cmsUInt32Number BytesPerPlaneln;
cmsUInt32Number BytesPerPlaneOut;

} cmsStride;

Full transform plug-in [2.04], [2.08]

Previous to 2.8, the generic transform function was slightly different. Icms2.8 regognizes te
veersion stamp for 2.4 to 2.7 and provides a conversion stage. The old generic transform
is now deprecated.

2.4

typedef void (* _cmsTransformFn)(struct _cmstransform_struct * CMM,
const void* InputBuffer,
void* OutputBuffer,
cmsUInt32Number Size,
cmsUInt32Number Stride);

It is equivalent to cmsDoTransformStride(), which is deprecated as well.

Parameters:
CMM: pointer to current transform. Equivalent to cmsHTRANSFORM object. May

be converted by a static cast.

Full transform plug-in [2.04], [2.08]

Example

/I The factory

cmsBool Dispatch(_cmsTransformFn* xformPtr, void** UserData,
_cmsFreeUserDataFn* FreePrivateDataFn,
cmsPipeline* Lut,
cmsUInt32Number* InputFormat,
cmsUInt32Number* OutputFormat,
cmsUInt32Number* dwFlags)

{
if (*InputFormat == MY_TYPE_RGB_8) {
xformPtr = my_fn;
return TRUE;
}
Return FALSE;
}

/[The plug-in structure
cmsPluginTransform Plugin = {

{ cmsPluginMagicNumber, 2040, cmsPluginTransformSig, NULL},

Dispatch
2

Mutex plug-in [2.06]

Mutex plug-in [2.06]

Using this plug-in, a programmer can control how read and write operations on profiles are
locked and therefore control concurrency. By default, pthreads library is used on all
implementations but Windows. On Windows, Critical sections are used.

Type:

cmsPluginMutexSig 0x6D747A48 // 'mtxH'

Structure:

typedef struct {
cmsPluginBase base;

_cmsCreateMutexFnPtrType CreateMutexPtr;
_cmsDestroyMutexFnPtrType DestroyMutexPtr;
_cmsLockMutexFnPtrType LockMutexPtr;

_cmsUnlockMutexFnPtrType UnlockMutexPtr;

} cmsPluginMutex;

User has to provide following functions:

typedef void* (* _cmsCreateMutexFnPtrType)(cmsContext ContextID);

typedef void (* _cmsDestroyMutexFnPtrType)(cmsContext ContextID, void* mtx);
typedef cmsBool (* _cmsLockMutexFnPtrType)(cmsContext ContextID, void* mtx);
typedef void (* _cmsUnlockMutexFnPtrType)(cmsContext ContextlD, void* mtx);

Example (Windows)

Mutex plug-in [2.06]

static
void* MyMixCreate(cmsContext id)

return (void*) CreateMutex(NULL, FALSE, NULL);
}

static
void MyMtxDestroy(cmsContext id, void* mtx)

CloseHandle((HANDLE) mtx);
}

static

cmsBool MyMtxLock(cmsContext id, void* mtx)

{
WaitForSingleObject((HANDLE) mtx, INFINITE);
return TRUE;

}

static
void MyMtxUnlock(cmsContext id, void* mtx)

{
}

ReleaseMutex((HANDLE) mtx);

static cmsPluginMutex MutexPluginSample = {
{ cmsPluginMagicNumber, 2060, cmsPluginMutexSig, NULL},

MyMtxCreate, MyMtxDestroy, MyMtxLock, MyMtxUnlock
15

Parallelization plug-in [2.14]

Parallelization plug-in [2.14]

Using this plug-in, a programmer can control how color transforms are split into different
processors. The multi-core plug-in is using this class. Incoming GPU plug-ins will also use
this way.

Type:

cmsPluginParalellizationSig 0x70726CU8 // ‘'prlH

Structure:

typedef struct {
cmsPluginBase base;

cmsint32Number MaxWorkers; // Number of starts to do as maximum
cmsUInt32Number WorkerFlags; // Reserved
_cmsTransform2Fn SchedulerFn; // callback to setup functions

} cmsPluginParalellization;;

User has to provide a scheduler function that splits the buffers, launches threads or
processes and waits for completion.

Example

static

void Scheduler(struct _cmstransform_struct®* CMMcargo,
const void* InputBuffer,
void* OutputBuffer,
cmsUInt32Number PixelsPerLine,
cmsUInt32Number LineCount,
const cmsStride* Stride)

{
}

static cmsPluginParalellization ParalellizationPluginSample = {

{ cmsPluginMagicNumber, 2140, cmsPluginParalellizationSig, NULL },
-1, 0, Scheduler

%

Support functions

Support functions

2.4

void* _cmsGetTransformUserData(struct _cmstransform_struct * CMM);

Returns a pointer to the user data associated with current color transform

Parameters:
CMM: pointer to current transform. Equivalent to cmsHTRANSFORM object. May

be converted by a static cast.
Returns:

A valid pointer to user data, or NULL on no data.

2.12

cmsUInt32Number _cmsGetTransformFlags(struct _cmstransform_struct * CMM);

Returns the original flags as declared when creating the color transform.

Parameters:
CMM: pointer to current transform. Equivalent to cmsHTRANSFORM object. May

be converted by a static cast.
Returns:

A cmsUInt32Number holding the flags.

Support functions

2.14

_cmsTransform2Fn _cmsGetTransformWorker(struct _cmstransform_struct* CMM);

Returns the worker callback for parallelization plug-ins

Parameters:
CMM: pointer to current transform. Equivalent to cmsHTRANSFORM object. May

be converted by a static cast.
Returns:

A cmsTransform2Fn pointer to transform function.

2.14

cmsInt32Number _cmsGetTransformMaxWorkers(struct _cmstransform_struct®* CMM);

Returns the maximum number of thread workers or -1 if auto detect has been selected

Parameters:
CMM: pointer to current transform. Equivalent to cmsHTRANSFORM object. May

be converted by a static cast.
Returns:

The maximum number of thread workers.

Plug-in support API

Plug-in support API
I/0 handlers

IO handlers are abstractions used to deal with files or streams. All reading/writing of ICC
profiles, PostScript resources and CGATS are done across 10 handlers. 10 handlers do
support random access. The 10 handler API allows you to access the low level functions,
as well as to write new handlers for specialized devices.

10 handler structure.

struct _cms_io_handler {

void* stream;
cmsContext ContextlD;
cmsUInt32Number UsedSpace;
cmsUInt32Number ReportedSize;

char PhysicalFile[cmsMAX_PATH];
cmsUInt32Number (* Read)(struct _cms_io_handler* iohandler, void *Buffer,

cmsUInt32Number size,
cmsUInt32Number count);

cmsBool (* Seek)(struct _cms_io_handler* iohandler,
cmsUInt32Number offset);
cmsBool (* Close)(struct _cms_io_handler* iohandler);
cmsUInt32Number (* Tell)(struct _cms_io_handler* iohandler);
cmsBool (* Write)(struct _cms_io_handler* iohandler,

cmsUInt32Number size, const void* Buffer);

Plug-in support API

Read/Write functions

2.0
cmsBool _cmsReadUInt8Number(cmsIOHANDLER* io, cmsUInt8Number* n);
cmsBool _cmsReadUInt16Number(cmslIOHANDLER* io, cmsUInt16Number* n);
cmsBool _cmsReadUInt32Number(cmslIOHANDLER* io, cmsUInt32Number* n);
cmsBool _cmsReadFloat32Number(cmslOHANDLER® io, cmsFloat32Number* n);
cmsBool _cmsReadUInt64Number(cmslIOHANDLER* io, cmsUInt64Number* n);
cmsBool _cmsRead15Fixed16Number(cmslOHANDLER® io, cmsFloat64Number® n);
cmsBool _cmsReadXYZNumber(cmslOHANDLER* io, cmsCIEXYZ* XYZ);
cmsBool _cmsReadUlInt16Array(cmslIOHANDLER® io, cmsUInt32Number n,
cmsUInt16Number* Array);
Reads several types from the given IOHANDLER.
Parameters:
lo: pointer to the cms|OHANDLER object.
Param: Pointer to an object to receive the result.
Returns:
TRUE on success, FALSE on error.
2.0

cmsBool _cmsWriteUInt8Number(cmslOHANDLER® io, cmsUInt8Number n);
cmsBool _cmsWriteUInt16Number(cmslOHANDLER® io, cmsUInt16Number n);
cmsBool _cmsWriteUInt32Number(cmslOHANDLER® io, cmsUInt32Number n);
cmsBool _cmsWriteFloat32Number(cmsIOHANDLER* io, cmsFloat32Number n);
cmsBool _cmsWriteUInt64Number(cmslOHANDLER® io, cmsUInt64Number n);
cmsBool _cmsWrite15Fixed16Number(cmslIOHANDLER* io, cmsFloat64Number n);
cmsBool _cmsWriteXYZNumber(cmslIOHANDLER?* io, const cmsCIEXYZ* XYZ2);
cmsBool _cmsWriteUInt16Array(cmslIOHANDLER* io, cmsUInt32Number n,

const cmsUInt16Number* Array);

Writes several types to the given IOHANDLER.

Parameters:
lo: pointer to the cmsIOHANDLER object.
Param: Object to write.

Returns:
TRUE on success, FALSE on error.

Plug-in support API

Type base helper functions.

2.0

cmsTagTypeSignature _cmsReadTypeBase(cmslIOHANDLER® io);

Reads a cmsTagTypeSignature from the given IOHANDLER.

Parameters:
lo: pointer to an cmsIOHANDLER object.

Returns:

cmsTagTypeSignature or 0 on error.

2.9

cmsBool _cmsWriteTypeBase(cmsIOHANDLER* io, cmsTagTypeSignature sig);

Writes s a cmsTagTypeSignature to the given IOHANDLER.

Parameters:
lo: pointer to an cmsIOHANDLER object.

Sig: cmsTagTypeSignature to be written.
Returns:
TRUE on success, FALSE on error.

Plug-in support API

Alignment & misc. functions.

2.0

cmsBool _cmsReadAlignment(cmsIOHANDLER* io);

Skips bytes on the given IOHANDLER until a 32-bit aligned position.

Parameters:
lo: pointer to a cmsIOHANDLER object.

Returns:
TRUE on success, FALSE on error.

2.0

cmsBool _cmsWriteAlignment(cmslIOHANDLER™ io);

Writes zeros on the given IOHANDLER until a 32-bit aligned position.

Parameters:
lo: pointer to cmslOHANDLER object.

Returns:
TRUE on success, FALSE on error.

.

cmsBool _cmslOPrintf(cmsIOHANDLER?* io, const char* frm, ...);

Outputs printf-like strings to the given IOHANDLER. To deal with text streams. 2K at most

Parameters:
lo: pointer to cmsIOHANDLER object.
Frm: format string (printf-like)
.... optional parameters (printf-like)
Returns:

TRUE on success, FALSE on error.

Plug-in support API

Fixed point helper functions

2.0

cmsFloat64Number _cms8Fixed8toDouble(cmsUInt16Number fixed8);

Converts from 8.8 fixed point to cmsFloat64Number.

Parameters:
fixed8: 8.8 encoded fixed point value.

Returns:

cmsFloat64Number holding the value.

cmsUInt16Number __cmsDoubleTo8Fixed8(cmsFloat64Number val);

Converts from cmsFloat64Number to 8.8 fixed point, rounding properly.

Parameters:
Val: cmsFloat64Number holding the value.

Returns:

8.8 encoded fixed point value.

cmsFloat64Number _cms15Fixed16toDouble(cmsS15Fixed16Number fix32);

Converts from 15.16 (signed) fixed point to cmsFloat64Number.

Parameters:
Fix32: 15.16 (signed) fixed point encoded fixed point value.

Returns:

cmsFloat64Number holding the value.

Plug-in support API

2.0

cmsS15Fixed16Number _cmsDoubleTo15Fixed16(cmsFloat64Number v);

Converts from cmsFloat64Number to 15.16 fixed point, rounding properly.

Parameters:
V: emsFloat64Number holding the value.

Returns:

15.16 (signed) fixed point encoded fixed point value.

Plug-in support API

Date/time helper functions

2.0

void _cmsEncodeDateTimeNumber(cmsDateTimeNumber *Dest,
const struct tm *Source);

Decodes from the standard “C” struct tm to ICC date and time format.

Parameters:
Dest: a pointer to a cmsDate TimeNumber structure.
Source: a pointer to a struct tm structure.

Returns:
None

void _cmsDecodeDateTimeNumber(const cmsDateTimeNumber *Source,
struct tm *Dest);

Decodes from ICC date and time format to the standard “C” struct tm.

Parameters:
Source: a pointer to a cmsDate TimeNumber structure.
Dest: a pointer to a struct tm structure.

Returns:
None

Plug-in support API

Error Logging API

For debugging purposes, it may be handy to know what is making a function to fail. This
function add traces to let developer what is going on.

cmsERROR_UNDEFINED

cmsERROR_FILE

cmsERROR_RANGE

cmsERROR_INTERNAL

cmsERROR_NULL

cmsERROR_READ

cmsERROR SEEK

cmsERROR_WRITE

cmsERROR_UNKNOWN_EXTENSION

OO N[O |WIN|(=O

cmsERROR_COLORSPACE_CHECK

cmsERROR_ALREADY_DEFINED 10

cmsERROR_BAD_SIGNATURE 11

cmsERROR_CORRUPTION_DETECTED 12

cmsERROR_NOT_SUITABLE 13

Table 1

void cmsSignalError(cmsContext ContextID, cmsUInt32Number ErrorCode,
const char *ErrorText, ...);

Parameters:
ContextID: Pointer to a user-defined context cargo.

ErrorCode: Error family, as stated in Table 1
ErrorText: Error description, printf-like
;. additional printf-like parameters.

Returns:
None

Warning: As this function uses a variable number of parameters, implementing such
function on Windows DLL, which uses the PASCAL calling convention, is undefined for
some compilers. Then, for example, Borland C++ 5.5 does not support this function. If you
are using such compiler and want to place your plug-ins in a separate DLL, you cannot
use this function at all. If you need this functionality in your plug-in, consider to use any
other compiler instead, or link your plug-ins within the Little CMS DLL.

Plug-in support API

Memory management API

Those are the memory management primitives as used by the core engine. It uses the
memory management plug-in if defined.

2.9

void* _cmsMalloc(cmsContext ContextID, cmsUInt32Number size);

Allocate size bytes of uninitialized memory.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Size: amount of memory to allocate in bytes

Returns:
Pointer to newly allocated block, or NULL on error.

2.0

void _cmsFree(cmsContext ContextlD, void* Ptr);

Cause the space pointed to by Pir to be deallocated; that is, made available for further
allocation. If ptr is a null pointer, no action will occur.

Parameters:

ContextID: Pointer to a user-defined context cargo.
Ptr: pointer to memory block.

Returns:
None

Plug-in support API

2.0

void* _cmsMallocZero(cmsContext ContextID, cmsUInt32Number size);

Allocate size bytes of memory. Initialize it to zero.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Size: amount of memory to allocate in bytes

Returns:
Pointer to newly allocated block, or NULL on error.

2.0

void* _cmsCalloc(cmsContext ContextID, cmsUInt32Number num,
cmsUInt32Number size);

Allocate space for an array of num elements each of whose size in bytes is size. The
space shall be initialized to all bits 0.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Num: number of array elements
Size: Array element size in bytes

Returns:
Pointer to newly allocated block, or NULL on error.

2.0

void* _cmsRealloc(cmsContext ContextID, void* Ptr, cmsUInt32Number NewSize);

The size of the memory block pointed to by the Ptr parameter is changed to the NewSize
bytes, expanding or reducing the amount of memory available in the block.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Ptr: pointer to memory block.
NewsSize: number of bytes.

Returns:
Pointer to newly allocated block, or NULL on error.

Plug-in support AP [N

2.0

void* _cmsDupMem(cmsContext ContextID, const void* Org, cmsUInt32Number size);

Duplicates the contents of memory at “Org” into a new block
Parameters:

ContextID: Pointer to a user-defined context cargo.
Org: pointer to source memory block.
Size: number of bytes to duplicate.

Returns:
Pointer to newly allocated copy, or NULL on error.

Plug-in support API

Vector & Matrix API

Those are low-level primitives to opearate with 3-component vectors and 3x3 matrices.
Please note this is an internal module, those types and functions are not shared with any
other part of the API. Use at your discretion.

VEC3 vectors

Vectors are defined as using 64-bit floating point numbers (cmsFloat64Numbers). It is a
column vector when used alone. When ued internally in MAT3, it stores rows.

typedef struct {
cmsFloat64Number n[3];

} cmsVECS3;

2.0

void _cmsVEC3init(cmsVEC3* r,
cmsFloat64Number x,
cmsFloat64Number vy,
cmsFloat64Number z);

Populates a vector.
Parameters:

r: a pointer to a cmsVEC3 object to receive the result
X, ¥, Z: components of the vector.

Returns:
None

void _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b);

Vector subtraction.

Parameters:

r: a pointer to a cmsVEC3 object to receive the result
a: A pointer to first cmsVEC3 object.
b: A pointer to second cmsVECS3 object.

Returns:
None

Plug-in support API

2.0
void _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v);
Vector cross product.
Parameters:
r: a pointer to a cmsVECS3 object to receive the result.
u: A pointer to first cmsVEC3 object.
v: A pointer to second cmsVEC3 object.
Returns:
None
2.0

cmsFloat64Number _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v);

Vector dot product
Parameters:

u: A pointer to first cmsVEC3 object.
v: A pointer to second cmsVEC3 object.

Returns:
Dot product u - v

cmsFloat64Number _cmsVEC3length(const cmsVEC3* a);

Euclidean length of 3D vector
Parameters:

a: A pointer to first cnsVEC3 object.
b: A pointer to second cmsVEC3 object.

Returns:

Euclidean length \/x? + y? + z?

Plug-in support API

2.0

cmsFloat64Number _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b);

Returns euclidean distance between a and b interpreting those as 3D points.
Parameters:

a: A pointer to first cmsVEC3 object.
b: A pointer to second cmsVECS3 object.

Returns:
Euclidean distance ||a-b||

Plug-in support API

MAT3 matrices

3x3 Matrices storage is implemented by 3 VEC3 vectors as rows to make initialization
easier.. The Plugin API provides several low-level primitives for 3x3 Matrix math.

typedef struct {
cmsVEC3 v[3];

} cmsMATS3;

void __cmsMAT3identity(cmsMAT3* a);

Fills “@” with identity matrix
Parameters:

a: A pointer to a cmsMAT3 object.

Returns:
None

cmsBool _cmsMAT3isldentity(const cmsMAT3* a);

Return true if “@” is close enough to be interpreted as identity. Else return false
Parameters:

a: A pointer to a cmsMAT3 object.

Returns:
TRUE on identity, FALSE on non-identity.

Plug-in support API

2.0

void _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b);

Multiply two matrices.r=a*b

Parameters:
r: a pointer to a cmsMAT3 object to receive the result.
a: A pointer to first cmsMAT3 object.
b: A pointer to second cmsMAT3 object.

Returns:
None

cmsBool _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b);

Inverse of a matrix b = a~!. Returns false if singular matrix
Parameters:

a: A pointer to the cmsMAT3 to be inverted.

b: A pointer to a cmsMAT3 object to store the result.
Returns:

TRUE on success, FALSE on error.

cmsBool _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b);

Solves a system in the form Ax = b. Returns FALSE if singular matrix
Parameters:

X: a pointer to a cmsVEC3 object to receive the result.

a: A pointer to first cnsMAT3 object.

b: A pointer to second cmsVEC3 object.

Returns:
TRUE on success, FALSE on error.

Plug-in support AP IR

2.0

void _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v);

Evaluates r= a*v.
Parameters:
r: a pointer to a cmsVEC3 object to receive the result.
a: A pointer to the cmsMAT3 object containing the transformation matrix.

v: a pointer to a cmsVECS3 object to be evaluated.

Returns:
None

Plug-in support API

Message Digest functions

Those functions are provided to expose the internal MD5 algorithms. This is a very basic
implementation, for reuse sake. All are accessible across Icm2_plugin.h header.

2.10

cmsHandle cmsMD5alloc (cmsContext ContextID);

Allocates a MD5 object.

Parameters:
ContextID: Pointer to a user-defined context.

Returns:
Handle to an MD5 object

void cmsMD5add (cmsHandle handle,
const cmsUInt8Number* buf, cmsUInt32Number len);

Adds to the digest the contents of memory pointed by buffer. Up to len bytes.

Parameters:
handle: Handle to an MD5 object
uf: pointer to memory holding the values to compute the digest
len: length of buffer in bytes.

Returns:
None

void cmsMD5finish (cmsProfilelD* id, cmsHandle handle);

Computes the digest number and destroys the MD5 object. In this case the digest number
is stored as profile ID.

Parameters:
id: Pointer to variable to get the digest.

Handle: Handle to an MD5 object

Returns:
None

Conclusion [N

Conclusion

Little CMS 2.x plug-in system is a convenient way to enhance the CMM functionality in
many aspects, but there are chances you don’t need to use plug-in to add new
functionality at all. If you can stay in the standard Little CMS API, | would recommend
avoiding writing plug-ins. Avoiding plug-ins is convenient because backwards compatibility,
clarity and maintainability. The normal API has been designed with easy-to-use goals; on
the other hand, on plug-in API functionality is the most desirable attribute.

If you decide to write extensions, please note there are many ways to do that. One
example would be to write functions using the plug-in API, but without exporting any plug-
in. This is ok if you need to use low-level functions that are not present in the normal API.

