(Q) Lil’s:llez

How to use the engine in your
applications
2.18

https://www.littlecms.com

Copyright © 2026 Marti Maria Saguer, all rights reserved.

https://www.littlecms.com/

Introduction

Table of Contents

INEFOAUCTION ... 4
(Do To18] g =T 01 =1 (o] o PP PPPPPRRPPR 5
=T o [1= 41T £ 6
INCIUAE FIlES ...t e e e 6
[Fo] o 0 o] g o= o €= 7
S0oUrce COAE CONVENTIONS ...ttt e e et e e e e e e e eeens 7
THE CONST KEYWOIT ... e 7
The regiSter KEYWOIT 7
= S o 1Y o= T 8

SteP-DY-StEP EXAMPIE......eei e 9
OPEN thE PrOfilES ...t e e 10
Identify the intended format of piXels ... 10
Create the transfOrmM ... 12

ReNAEring INTENTS.uiiiii e 12
OPEIMIZALION ... 14
APPLY the transform ... 14
Scanline Paddingoooo i 14
SCANINE OVEIIAP ... e 14
Finishing the color transform ... 15

SPECIal Profile TYPES ..o e 16
Embedded Profiles oo 16

DeViCe-liNK ProfileS......cccooieieieee e 16
Named COIOr Profil@Sii i e 18
BUIIE-IN PrOfIlES... ..ot 20

On-the-fly profiles ... 21

P OO NG e 25

Black point COMPeNnSationoooii e 27

Black preserving iNtentS ... 29

L= = = o = o = ST 30

=g ro] g Moo [[o TSR 31

Getting information from profileseeiiii i 33

Introduction

Textual INFOrMatioNo 33
Profile header fieldS. ... 35
Profile DIr€CIOIY ...t e e 36
Profile capabilitiesccoi oo 36
RNCT= (o [gTo R =T S PP POT R PRPPP 37
WIHHING 18GS oo 38
The liNked tag fEatUre..........ooii e e e e e eaeees 38
Creating New Profiles ... 38
TONE CUMVES ...ttt e e e e e et e et e e e e e e et reaaeeaaaaaa 39
Pipelines and Multi Processing elements..........cooooeiiiiiiiii e 41
(O IO =1 [T 41T o | 43
MaLrX ElIEMENT.......oiiiiiiiiiieee ettt 43
LGN YRS =T[5 o= o T 43
Additions and the processing element plug-incocooviiiiiiii e, 43
L (=11 L= o {1 T i) o 1= PSR 44
ColorimetriC SPACE CONVEISIONSciiiieiiiiiiiiicee e e e e et e e e e e e e e et e e e e e e e e e eab e e e eaaeas 44
Converting €NCOAEd VAIUESuuuuiiiiiiiiiiiiiiiiiiiiiiiieeiie bbb eaenanennne 44
Linear Bradford Chromatic Adaptationoooeuiiiiiiiiii e 45
Color difference fUNCHONSooiiiii e 46
Delta-E MetriCS....ccoiiiiiiiiiiiiiieee e 46
POSESCript QENEIatioN... ..o 48
CIECAMOZ. ...ttt ettt e e ettt e e ettt e e e e sttt e e e e ntb e e e e e nseeeeeannseeaeeaanseeaaeannneeens 50
GG AT S PAISEI ettt e e e e e e e e e ettt e e e e e e e e e e ettt e e e e eaaeeertaa e aaaaaas 53
L@ YT 1= N 53
MemOory ManagemENTooi e aaas 53
AITIONS <. 53
] (o1 O N S TSP URPSRPORPRR 54
Gamut boundary desCriPtONooiiiiiiie e 55

076] 2 [¢3 (V=110 o IR UTUR ORI UPRP 57

Introduction

Introduction

Welcome to the Little Color Management System. With this library you can enable your
applications to use International Color Consortium (ICC) profiles. Little CMS does accept
profiles conformant with ICC 4.3 or below, and supports all features described in the ICC
specification. Little CMS can operate with old V2 ICC profiles as well. The CMM does all
necessary adjustments and allows you to operate and mix both kind of profiles.

This file has been written to present the Little CMS core library to “would-be” writers of
applications. It first describes the concepts on which the engine is based, and then how to
use it to obtain transformations, colorspace conversions and other color-related
functionality. This document doesn't even try to explain the basic concepts of color
management. For a comprehensive explanation, | would recommend the excellent color &
gamma FAQs by Charles A. Poynton:

http://lwww.poynton.com

For more details about profile architecture, you can reach the latest ICC specs on:

http://www.color.org

PLEASE NOTE THAN Little CMS IS NOT AN ICC SUPPORTED LIBRARY

| will assume the reader does have a working knowledge of the C programming language.

This doesn’'t mean Little CMS can only be used by C applications, but it seems the easiest
way to present the API functionality. Little CMS is meant to be portable to any C99 compliant
compiler.

Introduction

Documentation

Little CMS documentation is hold in three different papers. This one you are reading is the
tutorial. Its goal is to introduce the engine and to guide you in its basic usage. It does not,
however, give details on all available functionality. For that purpose, you can use the API
reference, which gives information on all the constants, structures and functions in the
engine. The third document is the plug-in documentation. It details how to extend the engine
to fit your particular purposes. You need some experience in the core API to write plug-ins,
therefore, the plug-in API reference is somehow more advanced that the remaining two.

Aside documentation, there are sample programs that you can explore. Those are located
in the “utils” folder. Those programs are also handy in isolation. This is the list of utilities,
each one is documented elsewere.

¢ Tificc : Color manage tiff files

e Jpgicc: Color manage jpeg files

¢ ftransicc: Color calculator, convert numbers across ICC profiles
¢ linkicc: link two or more profiles in a single devicelink.

o tiffdiff: utility to get color differences in two similar tiff files

e psicc: Generate CRD and CSA for PostScript

Introduction

Requeriments

In order to improve portability and minimize code complexity, Little CMS.x requires a C99
compliant compiler. This requeriment has been relexed on Microsoft's Visual Studio
because its wide adoption by industry (VC is not fully C99 compliant). Borland C 5.5
(available for free) has been tested and found to work Ok. gcc and the Intel compiler does
work ok.

Include files

Any application using Little CMS has to include just one header.

\ #include “lcms2.h” |

The header has been renamed to Icms2.h in order to improve the adoption of version 2. In
fact, both Little CMS 1.x and 2.x can coexist installed in same machine. This is very
important on platforms like linux, where Little CMS is nested deep in the dependency tree.
Little CMS no longer relies on icc34.h or any file coming from ICC. All constants are now
prefixed by “cms” and there is just one single license for all the package.

Lcms2.h does expose the API, and only the API. Unlike 1.xx series, all internal functions are
no longer accesible for client applications.

A special case are the Little CMS plug-ins. Those constructs can access more functions that
the API, just because they are supposed to access Little CMS internals to add new
functionality. There is a specialized include file for that:

‘ #include “lcms2_plugin.h” |

This file should only be included when defining plug-ins. It defines some additional functions
and is described in the Little CMS2.x Plugin APl document.

Introduction

Basic Concepts

Little CMS defines several kinds of structures, that are used to manage the various
abstractions required to access ICC profiles. The main structures are profiles and
transforms. In a care of good encapsulation, these objects are not directly accessible from
a client application. Rather, the user receives a ‘handle’ for each object it queries and wants
to use. This handle is a stand-alone reference; it cannot be used like a pointer to access
directly the object's data. This approach is used on other parts of the API as well, across a
generic handle.

There are typedef's for such handles:

o cmsHPROFILE identifies a handle to an open profile.
¢ cmsHTRANSFORM identifies a handle to a transform.
o cmsHANDLE identifies a generic object.

Source code conventions

¢ All API functions and types have their label prefixed by 'cms' (lower-case). All plug-
in building aids are prefixed by ‘*_cms’ (lower-case).

¢ Some functions does accepts flags. In such cases, you can build the flags specifier
joining the values with the bitwise-or operator '|'.

¢ Functions does report error by the return code.

¢ Animportant note is that the engine should not leak memory when returning an
error, e.g., querying the creation of an object will allocate several internal tables
that will be freed if a disk error occurs during a load.

The const keyword

‘const’ is your friend. Since Little CMS requires now C99, | have enforced the use of const
whatever possible. My advice is to hint the compiler with const on all chances of constant
objects; it is very useful to find bugs. So, if the compiler complains on any Little CMS function
because a const parameter, don’t blame the API, revise your code and probably you would
find a glitch.

The register keyword

Little CMS uses and requires C99, and this standard allows the use of ‘register” keyword.
Some compilers complain about this as being deprecated. Well, standards cannot be
changed in retro-active way unless you have a time machine! But anyway, if you want to
compile the code as C++14 or things like that, you can use the toggle
CMS_NO_REGISTER_KEYWORD, this is set automatically if a C++17 compiler is detected.
For Visual Studio, you need to add /Zc:__cplusplus to make it follow the standard. | don’t
know why.

Basic Types

Introduction FENEEN

In order to guarantee portability, Icms2.h does define several base types. If you don’t need
your code to be portable, you can still use ‘int, ‘long’ etc. But using Little CMS types you
make sure about the representation of the data. Here are the basic types. See the API
reference for further details.

Type

Bits Signed Comment

cmsUInt8Number
cmsInt8Number
cmsUInt16Number
cmsint16Number
cmsUInt32Number
cmsiInt32Number
cmsUInt64Number
cmsiInt64Number
cmsFloat32Number
cmsFloat64Number
cmsBool

8

8

16
16
32
32
64
64
32

64
?

No
Yes
No
Yes
No
Yes
No
Yes
Yes
Yes
No

Byte
Word

Double word
Native int on most 32-bit architectures

IEEE float

IEEE double

TRUE, FALSE Boolean type, which will be
using the native integer

Step-by-step Example I

Step-by-step Example

Here is an example to show, step by step, how a client application can transform a bitmap
between two ICC profiles using the lcms API.

#include "lcms2.h"

int main(void)
{
cmsHPROFILE hinProfile, hOutProfile;
cmsHTRANSFORM hTransform;
int i;

hinProfile = cmsOpenProfileFromFile("HPSJTW.icc", "r");
hOutProfile = cmsOpenProfileFromFile("sRGBColorSpace.icc", "r");

hTransform = cmsCreateTransform(hInProfile,
TYPE_BGR_8,
hOutProfile,
TYPE _BGR_8,
INTENT PERCEPTUAL, 0);

cmsCloseProfile(hInProfile);
cmsCloseProfile(hOutProfile);

for (i=0; i < AllScanlinesTilesOrWatseverBlocksYouUse; i++)

{
cmsDoTransform(hTransform, YourlnputBuffer,
YourOutputBuffer,
YourBuffersSizelnPixels);
}

cmsDeleteTransform(hTransform);

return O;

This is slightly different from the sample on 1.xx series, as Little CMS allows you to close
the profiles after creating the transform. On 1.xx you have to keep profiles open on all
transform life, that is no longer required in Little CMS.x

Step-by-step Example

Open the profiles

You will need the profile handles for create the transform. In this example, | will create a
transform using a HP Scan Jet profile as input, and sRGB profile as output. This task can
be done by following lines:

cmsHPROFILE hinProfile, hOutProfile;

hinProfile = cmsOpenProfileFromFile("HPSJTW.icc", "r")
hOutProfile = cmsOpenProfileFromFile("sRGBColorSpace.icc", "r")

You surely have noticed a second parameter with a small "r". This parameter is used to set
the access mode. It describes the "opening mode" like the C function fopen(). If the function
fails, it return NULL. In this example we don’t check the return code because simplicity sake,
but you should do that if you care about segfaults!

WARNING! Opening with 'w' WILL OVERWRITE YOUR PROFILE!
Don’t do this except if you want to create a NEW profile.

Opening a profile only will take a small fraction of memory. The BToA or AToB tables, which
usually are big, are only loaded at transform-time, and on demand. You can safely open a
lot of profiles if you wish to do so.

Little CMS is a standalone color engine, it knows nothing about where the profiles are
placed. It does assume nothing about a specific directory (as Windows does, currently
expects profiles to be located on SYSTEM32/SPOOL/DRIVERS/COLOR folder in main
windows directory), so for get this example working, you need to copy the profiles in the
local directory.

Identify the intended format of pixels

Little CMS can handle a lot of formats:

e 8 and 16 bits per sample

e up to 15 channels

e extra (unused) channels like alpha

e swapped-channels like BGR

¢ endian-swapped 16 bps formats like PNG
e chunky and planar organization

¢ Reversed (negative) channels

e Floating-point numbers

e Alpha channels, even premultiplied

Step-by-step Example

For describing such formats, Icms does use a 32-bit value, referred below as "formatters ".
This is just a 32-bit word holding information about the format in bits. Normally, you need
not to worry about how a format pecifier is built. There are several (most usual) encodings
predefined as constants, but there are a lot more. See the API reference for a complete list.
Let's now say that there are specifiers for many color spaces encoded in 8 bits, in 16 bits
and in floating-point. This latter in 32 or 64 bits per channel. Here are some samples:

TYPE_RGB_DBL TYPE_CMYK_DBL TYPE Lab_FLT
TYPE _XYZ FLT TYPE_GRAY 8 TYPE_GRAY_16
TYPE_RGB_8 TYPE_RGB_8 PLANAR | TYPE BGR 16
TYPE_BGR_16_SE TYPE_RGBA 8 TYPE_CMY_8
TYPE_CMY_16_PLANAR . efc...

For example, if you are transforming a windows .bmp to a bitmap for display, you will use
TYPE_BGR_8 for both, input and output buffers, windows does store images as B,G,R and
not as R,G,B. Another example, you need to convert from a CMYK separation to RGB in
order to display; then you would use TYPE_CMYK_8 on input and TYPE_BGR_8 on output.
If you need to do the separation from a TIFF, TYPE_RGB_8 on input and TYPE_CMYK_8
on output. Please note TYPE_RGB_8 and TYPE_BGR 8 are *not* same.

Alpha channels can be handled by using formatters. Little CMS supports staight
(unassociated) alpha and premultiplied alpha as well. See the API reference for more details
on alpha channels.

The format specifiers are useful above color management. This will provide a way to handle
a lot of formats, converting them in a single, well-known one. For example, if you need to
deal with several pixel layouts coming from a file (TIFF for example), you can use a fixed
output format, say TYPE_BGR_8 and then, vary the input format on depending on the file
parameters. Little CMS also provides a flag for inhibit color management if you want speed
and don't care about profiles. see cmsFLAGS_NULLTRANSFORM for more info.

Step-by-step Example

Create the transform

When creating transform, you are giving to Little CMS all information it needs about how to
translate your pixels. The syntax for simple transforms is:

cmsHTRANSFORM hTransform;

hTransform = cmsCreateTransform(hinputProfile,
TYPE_BGR_8,
hOutputProfile,
TYPE_BGR_8,
INTENT_PERCEPTUAL, 0);

You give the profile handles, the format of your buffers, the rendering intent and a
combination of flags controlling the transform behaviour.

Rendering intents

It's out of scope of this document to define the exact meaning of rendering intents. | will try
to make a quick explanation here, but often the meaning of intents depends on the profile
manufacturer.

INTENT_PERCEPTUAL:

Hue hopefully maintained (but not required), lightness and saturation
sacrificed to maintain the perceived color. White point changed to result in
neutral grays. Intended for images.

INTENT_RELATIVE_COLORIMETRIC:

Within and outside gamut; same as Absolute Colorimetric. White point
changed to result in neutral grays.

INTENT_SATURATION:

Hue and saturation maintained with lightnesssacrificed to maintain
saturation. White point changed to result in neutral grays. Intended for
business graphics (make it colorful charts, graphs, overheads, ...)

INTENT_ABSOLUTE_COLORIMETRIC:

Within the destination device gamut; hue, lightness and saturation are
maintained. Outside the gamut; hue and lightness are maintained, saturation
is sacrificed. White point for source and destination; unchanged. Intended for
spot colors (Pantone, TruMatch, logo colors, ...)

Step-by-step Example

With Little CMS there are additional intents. Those does not belong to the ICC spec, and
therefore they are labeled as “user” intents. In fact, by using plug-ins you can extend the list
of available intents.

Little CMS.1 does add following non-ICC intents by default:

o INTENT PRESERVE K _ONLY PERCEPTUAL

e INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC
e INTENT_PRESERVE_K_ONLY_SATURATION

e INTENT PRESERVE K _PLANE_PERCEPTUAL

e INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC
o INTENT PRESERVE K _PLANE _SATURATION

All those new intents deal with black preservation. They are described below, see the black
preservation section.

Not all profiles does support all intents, there is a function for inquiring which intents are
really supported for a given profile, but if you specify a intent that the profile doesn't handle,
Little CMS will select default intent instead.

This is the algorithm for selecting ICC intents:

INTENT_PERCEPTUAL:

If adequate table is present in profile,
then it is used. Else default intent of profiles is used

INTENT_RELATIVE_COLORIMETRIC:

If adequate table is present in profile,
then it is used. Else revert to perceptual
intent.

INTENT_SATURATION:
If adequate table is present in profile,
then it is used. Else revert to perceptual
intent.

INTENT_ABSOLUTE_COLORIMETRIC:

relative colorimetric intent is used
with undoing of chromatic adaptation.

Step-by-step Example

Optimization

Little CMS tries to optimize profile chains whatever possible. There are some built-in
optimization schemes, and you can add new schemas by using a plug-in. This generally
improves the performance of the transform, but may introduce a small delay when creating
the transform. In modern machines this is not noticeable at all. If you are going to transform
just few colors, you don't need this precalculations. Then, the flag
cmsFLAGS_NOOPTIMIZE in cmsCreateTransform() can be used to inhibit the optimization
process. See the API reference for a more detailed discussion of the flags.

Apply the transform

Next, you can translate your bitmap, calling repeatedly the processing function:

cmsDoTransform(hTransform, YourlnputBuffer,
YourOutputBuffer,
YourBuffersSize);

This function is intended to be quite fast. You can use this function for translating a scan
line, a tile, a strip, or whole image at time.

Scanline padding

Windows, stores the bitmaps in a particular way... for speed purposes, does align the scan
lines to double word boundaries, a bitmap has in windows always a size multiple of 4. This
is OK, since no matter if you waste a couple of bytes, but if you call cmsDoTransform() and
passes it WHOLE image, Little CMS doesn't know nothing about this extra padding bytes. It
assumes that you are passing a block of BGR triplets with no alignment at all. This result in
a strange looking "lines" in obtained bitmap. The solution most evident is to convert scan
line by scan line instead of whole image. This is as easy as to add a for() loop, and the time
penalty is so low that is impossible to detect.

Scanline overlap

It is safe to use same block for input and output, but only if the input and output are coded
in same format. For example, you can safely use only one buffer for RGB to RGB but you
cannot use same buffer for RGB as input and CMYK as output.

Step-by-step Example

Finishing the color transform

New with Little CMS is the ability to free profiles just after creating the transform. A open
profile may take big amounts of memory, so it is a good idea to free the resources as soon
as you don’t need them. Color transforms does take also resources, so you have to free
them to avoid leaks.

This can be done by calling:

cmsDeleteTransform(hTransform);
cmsCloseProfile(hInputProfile);
cmsCloseProfile(hOutputProfile);

Note that cmsDeleteTransform() does NOT automatically free associated profiles. This
works in such way to let programmers to use a open profile in more than one transform.

Special profile types

Special profile types

Aside the normal, file-based profiles, there are a number of situations where you may want
something different. Here are listed such special cases.

Embedded profiles

Some image file formats, like TIFF, JPEG or PNG, does include the ability of embed profiles.
This means that the input profile for the bitmap is stored inside the image file. Little CMS
provides a specialised profile-opening function for deal with such profiles.

cmsHPROFILE cmsOpenProfileFromMem(const void * MemPtr,
cmsUInt32Number dwSize);

This function works like cmsOpenProfileFromFile(), but assuming that you are given full
profile in a memory block rather than a filename. Here there is no "r", since these profiles
are always read-only. A successful call will return a handle to an opened profile that behaves
just like any other file-based. NULL if the function fails.

Memory based profiles does not waste more resources than memory, so you can have tons
of profiles opened sumultaneously by using this function. Once opened, you can safely
FREE the memory block. Little CMS keeps a temporary copy. You can retrieve information
of this profile, but generally these are minimal shaper-matrix profiles with little if none handy
info present.

Be also warned that you may find WRONG profiles embedded, i.e., profiles marked as using
different colorspace that one the profile really manages. Little CMS is NOT likely to
understand these profiles since they will be wrong at all.

Device-link profiles

Device-link profiles are "smelted" profiles that represents a whole transform rather than
single-device profiles. In theory, device-link profiles may have greater precision that
input/output chains and are faster to load. If you plan to use device-link profiles, be warned
there are drawbacks about its inter-operability and the gain of speed is almost null. Perhaps
their only advantage is when restoration from CMYK with great precision is required, since
CMYK to pcs CLUTs can become very, very big.

Special profile types

For creating a device-link transform, you may open the device link profile as usual, using
cmsOpenProfileFromFile(). Then, create the transform with
cmsCreateMultiprofileTransform.

hDevicelLink = cmsOpenProfileFromFile("MYDEVLINK.icc", "r");

hTransform = cmsCreateMultiprofileTransform(&hDevicelink,
1)
TYPE_RGB_8,
TYPE_BGR_8,
INTENT_PERCEPTUAL,
0);

That's all. Little CMS will understand and transparently handle the device-link profile. Note
the first parameter is an array of handles, so you can use ‘&’ in this particular case. Another
option is to use the device link profile as input and the output profile parameter equal to
NULL:

hDeviceLink = cmsOpenProfileFromFile("MYDEVLINK.icc", "r");

hTransform = cmsCreateTransform(hDeviceLink, TYPE_RGB_8,
NULL, TYPE_BGR_S,
INTENT_PERCEPTUAL,
0);

There is also a function for dumping a transform into a devicelink profile.

cmsHPROFILE cmsTransform2DeviceLink(cmsHTRANSFORM hTransform,
cmsFloat64Number Version,
cmsUInt32Number dwFlags);

This profile can be used in any other transform or saved to disk/memory. Note that you must
specify the version number. That is required because v4 profiles may be implemented in a
quite different way of v2. Settinng proper version number will assure you compatibility with
other software. 4.2 is the latest ICC revision. 3.4 will assure compatibility with old software.

If you want to save information on which profiles has been used in the transform, you must
include the special flag cmsFLAGS_KEEP_SEQUENCE when creating the transform. This
is done in such way because the original profiles may hold multi localized descriptions, and
the total memory may be very big. Unless you need to create strictly compliant device links,
you need not this flag.

Special profile types

Named color profiles

Named color profiles are a special kind of profiles
handling lists of spot colors. The typical example is
PANTONE®. Little CMS deals with named color
profiles like all other types, except they must be in input
stage and the encoding supported is limited to a one
single channel of 16-bit that works as an index to the
table.

trademark of Pantone, Inc. PANTONE Color identification is solely for artistic

\ ’ Little CMS has no affiliation with PANTONE Company. PANTONE® is a
purposes and not intended to be used for specification.

Let's assume we have a Named color profile holding only 4 colors:

e CYAN

e MAGENTA
e YELLOW

e BLACK

We create a transform using:

hTransform = cmsCreateTransform(hNamedColorProfile,
TYPE_NAMED_ COLOR_INDEX,
hOutputProfile,
TYPE_BGR_8,
INTENT_PERCEPTUAL, 0);

TYPE_NAMED_COLOR_INDEX is a special encoding for these profiles, it represents a
single channel holding the spot color index. In our case value 0 will be "CYAN", value 1
"MAGENTA" and so one. For converting between string and index, you have to retrieve
the list by using

cmsNAMEDCOLORLIST* cmsGetNamedColorList(cmsHTRANSFORM xform);

Then there are several function to deal with such lists. For example, there is an auxiliary
function:

Special profile types

cmsInt32Number cmsNamedColorindex(const cnsNAMEDCOLORLIST* v,
const char* Name);

That will perform a look up on the spot colors database and return the color number or -1 if
the color was not found. Other additional functions for named color transforms are:

cmsUInt32Number cmsNamedColorCount(const cnsNAMEDCOLORLIST* v);

That returns the number of colors present on transform database.

cmsBool cmsNamedColorinfo(const cmsNAMEDCOLORLIST* NamedColorList,
cmsUInt32Number nColor,
char* Name,
char* Prefix,
char* Suffix,
cmsUInt16Number* PCS,
cmsUInt16Number* Colorant);

That returns extended information about a given color. Named color profiles does hold two
coordinates for each color, let's take our PANTONE example. This profile would contain for
each color the CMYK colorants plus its PCS coordinates, usually in Lab space. Little CMS
can work with named color using both coordinates. Creating a transform with two profiles, if
the input one is a named color, then you obtain the translated color using PCS.

Example, named color > sRGB will give the color patches in sSRGB

On the other hand, creating a multiprofile transform with only one named color profile
returns the device coordinates, that is, CMYK colorants in our PANTONE sample.

Example: Named color will give the CMYK amount for each spot color.

So, you can use a named color profile in two different ways, as output, giving the index and
getting the CMYK values or as input and getting the Lab for that color.

e A transform which involves only one named color profile will give the CMYK values
for the spot color on the printer the profile is describing. This would be the normal
usage.

¢ A transform Named color -> another printer will give on the output printer the spot a
color as if they were printed in the printer named color profile is describing. This is
useful for soft proofing.

Special profile types

Built-in profiles

There are several built-in profiles that programmer can use without the need of any disk
file. These does include:

o sRGB profile

e L*a*b profiles

o XYZ profile

o Gray profiles

o RGB matrix-shaper.

e Linearization device link
e Ink-Limiting device link

e Adjust device link.

e NULL profile

.CUBE import device link

Many of there are very useful for tricking & trapping. For example, creating a transform from
sRGB to Lab could be done without any disk file.

Something like:

hsRGB = cmsCreate_sRGBProfile();
hLab = cmsCreatelLab4Profile()

xform = cmsCreateTransform(hSRGB, TYPE_RGB_DBL, hLab,
TYPE Lab DBL,
INTENT_PERCEPTUAL, 0);

Then you can convert directly form double sRGB values (in 0..1.0 range) to Lab by using:

double RGBJ3];
cmsCIELab Lab;

RGBI[0] = 0.1; RGB[1] = 0.2 RGBJ[2] = 0.3;
cmsDoTransform(xform, RGB, &Lab, 1);

.. get result on "Lab" variable ..

The NULL profile returns zero for any input color. This is useful for out-of-gamut warning. If
you need to know which pixels are out of gamut, but want only zeros or ones as result, you
can use the NULL profile as output and turn on the gamut warning feature.

Special profile types

Some of those built-ins does accept parameters. That means, the built in primitive does not
generate a unique profile but families of profiles with same functionality. | will call that “on
the fly” profiles. You can create your own RGB or Gray input profiles "on the fly". See next
section on how to do that.

On-the-fly profiles

There are several situations where it will be useful to build a minimal profile using adjusts
only available at run time. Surely you have seen the classical pattern-gray trick for adjusting
gamma: the end user moves a scroll bar and when pattern seems to match background
gray, then gamma is adjusted. Another trick is to use a black background with some gray
rectangles. The user chooses the most neutral grey, giving the white point or the
temperature in °K. All these visual gadgets are not part of Little CMS, you must implement
them by yourself if you like. But Little CMS will help you with a function for generating a
virtual profile based on the results of these tests.

Another usage would be to build colorimetric descriptors for file images that does not include
any embedded profile, but does include fields for identifying original colorspace.

One example is TIFF files. The TIFF 6.0 spec talks about "RGB Image Colorimetry" (See
section 20) a "colorimetric" TIFF image has all needed parameters (WhitePointTag=318,
PrimaryChromacitiesTag=318, TransferFunction=301, TransferRange=342)

Obtain a emulated profile from such files is easy since the contents of these tags does
match the cmsCreateRGBProfile() parameters. Also PNG can come with information for
build a virtual profile, See the gAMA and cHRM chunks.

Special profile types

RGB virtual profiles

This is the main function for creating virtual RGB profiles:

cmsHPROFILE cmsCreateRGBProfile(const cmsCIExyY* WhitePoint,
const cmsCIExyYTRIPLE* Primaries,
cmsToneCurve* const TransferFunction[3])

It takes as arguments the white point, the primaries and 3 tone curves. The profile
emulated is always operating in RGB space. Once created, a handle to a profile is
returned. This opened profile behaves like any other file or memory based profile. Virtual
RGB profiles are implemented as matrix-shaper, so they cannot compete against CLUT
based ones, but generally are good enough to provide a reasonable alternative to generic
profiles. To simplify the parameters construction, there are additional functions, for
example:

cmsBool cmsWhitePointFromTemp(cmsCIExyY* WhitePoint,
cmsFloat64Number TempK)

This function computes the xyY chromacity of white point using the temperature. Screen
manufacturers often includes a white point hard switch in monitors, but they refer as
"Temperature" instead of chromacity. Most extended temperatures are 5000K, 6500K and
9300K.

It returns TRUE if a valid white point can be computed, or FALSE if the temperature were
non valid. You must give a pointer to a cmsCIExyY struct for holding resulting white point.
For primaries, currently | don't know any trick or proof for identifying primaries, so here are
a few chromacities of most extended. Y is always 1.0

RED GREEN BLUE
X ¥y X ¥y X ¥

NTSC 0.67, 0.33, 0.21, 0.71, 0.14, 0.08
EBU(PAL/SECAM) 0.64, 0.33, 0.29, 0.60, 0.15, 0.06
SMPTE 0.630, 0.340, 0.310, 0.595, 0.155, 0.070
HDTV 0.670, 0.330, 0.210, 0.710, 0.150, 0.060
CIE 0.7355,0.2645,0.2658,0.7243,0.1669,0.0085

These are TRUE primaries, not colorants. Little CMS does include a white-point balancing
and a chromatic adaptation using a method called Bradford Transform for D50 adaptation.

Special profile types

The tone curves can be generated by any tone curve creation function. The simplest one is
cmsBuildGamma, which creates a pure-exponential function like CRT gamma. See the tone
curves section for more information on how to create such curves.

Gray virtual profiles

Another kind of profiles that can be built on runtime are gray scale profiles. This can be
accomplished by the function:

cmsHPROFILE cmsCreateGrayProfile(const cmsCIExyY* WhitePoint,
const cmsToneCurve* TransferFunction);

This one is somehow easier, since it only takes one curve (the transfer function) and the
media white point. Of course gray scale does not need primaries, since they are
monochrome. The primary here is the white point itself.

Linearization device links

This is a very handy type of virtual profiles. It may be use for several things, like linearizing
printers or applying curves to RGB images. They basically apply a transform that is
channel-independent. That is, each channel response is independent of the rest of
channels. That may be understood as applying curves to each channel, but the response
can be tabulated and is not restricted to curves.

cmsHPROFILE cmsCreateLinearizationDeviceLink(
cmsColorSpaceSignature ColorSpace,
cmsToneCurve* const TransferFunctionsl]);

You need to specify the color space the profile is operating, which must be the same on
input and output, and the tone curves to apply to each channel. The number of channels is
implicit in the color space.

Ink limiting device links

Intended mainly for CMYK. It uses the hypercube algorithm. Works on CMYK - CMYK, and
the parameter specifies the total amount of ink in %. Black ink is never reduced, CMY are
reduced proportionally to meet the limits.

cmsHPROFILE cmsCreatelnkLimitingDeviceLink(
cmsColorSpaceSignature ColorSpace,
cmsFloat64Number Limit);

Special profile types

The Color Space parameter is provided for future extensions. Currently it only supports
CMYK.

Bright, Contrast, Hue, Saturation and white point.

Provided for compatibility with previous versions. With this function you can adjust
Brightness, Contrast, Hue and Saturation in a color transform. Additionally you can modify
the color temperature. It mimics the controls found on most monitors. Operates on L'a’b” 2>
L'a’b’, so this profile should be inserted into input and output profiles.

cmsHPROFILE cmsCreateBCHSWabstractProfile(int nLUTPoints,
cmsFloat64Number Bright,
cmsFloat64Number Contrast,
cmsFloat64Number Hue,
cmsFloat64Number Saturation,
int TempStrc,
int TempDest);

Ranges are:

Bright: O=no op, < 0 decrease, > 0 increase
Contrast: 1=no op, < 1 decrease, > 1 increase
Saturation: 0=no op, < 0 decrease, > 1 increase
Hue: 0=no op, up to 360° hue displacement

Adjusts are done in the LCh space, by using those formulae:

LChOQOut.L = LChIn.L * bchsw ->Contrast + bchsw ->Brightness;
LChOut.C = LChIn.C + bchsw -> Saturation;
LChOut.h = LChin.h + bchsw -> Hue;

Proofing

Proofing

An additional ability of Little CMS is to
create "proofing" transforms.

ProPhoto RGB

A proofing transform can emulate the Adobe RGB

colors that would appear as the
image were rendered on a specific
device. That is, for example, with a
proofing transform | can see how will
look a photo of my little daughter if
rendered on my HP printer. Since
most printer profiles does include
some sort of gamut-remapping, it is
likely colors will not look as the
original. Using a proofing transform,
it can be done by using the
appropriate function. Note that this is
an important feature for final users, it
is worth of all color-management
stuff if the final media is not cheap.

sRGB

2200 Matt Paper

‘Horseshoe Shape of Visible Color

The creation of a proofing transform involves three profiles, the input and output ones as
cmsCreateTransform() plus another, representing the emulated profile.

cmsHTRANSFORM cmsCreateProofingTransform(cmsHPROFILE Input,
cmsUInt32Number InputFormat,
cmsHPROFILE Output,
cmsUInt32Number OutputFormat,
cmsHPROFILE Proofing,
cmsUInt32Number Intent,
cmsUInt32Number Proofinglntent,
cmsUInt32Number dwFlags);

Also, there is another parameter for specifying the intent for the proof. The Intent here
represents the intent the user will select when printing, and the proofing intent represent the
intent system is using for showing the proofed color. Since some printers can archive colors
that displays cannot render (darker ones) some gamut-remapping must be done to
accommodate such colors. Normally INTENT_ABSOLUTE_COLORIMETRIC is to be used:
itis likely the user wants to see the exact colors on screen, cutting off these un-representable
colors.

INTENT_RELATIVE_COLORIMETRIC could serve as well.

Proofing

Proofing transforms can also be used to show the colors that are out of the printer gamut.
You can activate this feature by using the cmsFLAGS _GAMUTCHECK flag in dwFlags field.

Then, the function:

void cmsSetAlarmCodes(cmsUInt16Number NewAlarm[cmsMAXCHANNELS]);

Can be used to define the out-of-gamut marker. Range is 0..0xffff

For activating the preview or gamut check features, you MUST include the corresponding
flags

cmsFLAGS_SOFTPROOFING
cmsFLAGS_GAMUTCHECK

This is done in such way because the user usually wants to compare with/without
softproofing. Then, you can share same code. If any of the flags is present, the transform
does the proofing stuff. If not, the transform ignores the proofing profile/intent and behaves
like a normal input-output transform. In practical usage, you need only to associate the
check boxes of "softproofing" and "gamut check" with these flags.

Black point compensation

Black point compensation

Black Point Compensation (BPC) controls whether to adjust for differences in black points
when converting colors between color spaces. When Black Point Compensation is enabled,
color transforms map white to white and luminance of black to luminance of black. The black
point compensation feature does work better in conjunction with relative colorimetric intent.
Perceptual intent should make no difference, although it may affect some (wrong) profiles.

u
. |
Without KPC u With KPC
Printer - Printer
input dynamic output = dynamic output
aRGB range Output sample n aRGB range Output sample
‘ - ‘ | .
14 [] 14 14
- Y
™ ~
- 1 T
v ™ 2 N
|
n / \
= /] 7\ N Keeps
) : details
- in all the
[dynamic
|
- range
|
u
|
) Loss u
|
of -
detail]
u
— -
u

The mechanics are simple. BPC does scale full image across gray axis in order to
accommodate the darkest tone origin media can render to darkest tone destination media
can render. Let's take an example. You have a separation (CMYK image) for, say, SWOP.
Then you want to translate this separation to another media on another printer. The
destination media/printer can deliver a black darker that original SWOP. Now you have
several options.

a) Use perceptual intent, and let profile do the gamut remapping for you. Some users
complain about the profiles moving too much the colors. This is the "normal" ICC
way.

b) Use relative colorimetric. This will not move any color, but depending on different
media you would end with "flat" images, taking only a fraction of available grays or
a "collapsed" images, with loss of detail in dark shadows.

Black point compensation

c) Use relative colorimetric + black point compensation. This is the discussion theme.
Colors are unmoved *except* gray balance that is scaled in order to accommodate
to the dynamic range of new media. Is not a smart CMM, but a fist step letting the
CMM to do some remapping.

The algorithm used for black point compensation is a XYZ linear scaling in order to match
endpoints. You can enable the BPC feature by using this in the dwFlags field, it works on
softproofs too.

cmsFLAGS_BLACKPOINTCOMPENSATION

Black preserving intents

Black preserving intents

Black preservation deals with CMYK - CMYK transforms, and is intended to preserve, as
much as possible, the black (K) channel whilst matching color by using CMY inks. There is
a tradeoff between accuracy and black preservation, so you lost some accuracy in order to
preserve the original separation. Not to be a big problem in most cases, benefits of keeping
K channel are huge!

No, this does not belong to normal ICC workflow. ICC has tried to address such need but
still there is nothing in the spec.

Let's see what the issue is. Suppose we work in
press. Press are very tied to standards, US press
uses SWOP and European folks are more toward
FOGRA. Japanese people use other standards
like TOYO, for example. Each standard is very
well detailed and presses are setup to faithfully
emulate any of these standards.

f\ambswm : _ ' Ok, let's imagine you got an image ad, looking like
22723 October in Munich . . S .
that. This is a very usual flier; now just imagine
instead of getting it in PDF, you get it as a raster
file. Say in a CMYK TIFF, ready for a SWOP

The first Fogra Packaging Sympasum will open with an introduction to
the key aspects and trends in packaging design and will then take 3 closer press. And you want to print in on a FOGRA27!
look at foodstuff packaging and its special reguirements. One session
will be devoted to the legal aspects of foodstuff packaging printing and
the appropriate, up-to-date production technology and there will then
follow 3 survey of the possabilities and limits of actual production using

-
flexo, gravure, offset and digital printing. The session will conclude with I h : F I E t F u ra
a series of reports presenting actua) experiences of pharmaceutical and .

foodstuff packaging

If I convert from SWOP to FOGRA27, the ICC profiles tht kc?lr asmcts
totally mess up the K channel, so a portion of the picture I

that originally is using only black ink, after the IUUk 'at fDDﬁ-tL
conversion, gets Cyan, Magenta, Yellow and well, a little - .

bit of black as well. Now please realize what happens on w'" hg: dﬂn tl:d
all the text in the Flier.

Little CMS has added two different modes to deal with that: Black-ink-only preservation and
black-plane preservation. The first is simple and effective: do all the colorimetric transforms
but keep only K (preserving L*) where the source image is only black. The second mode is
fair more complex and tries to preserve the WHOLE K plane.

http://3.bp.blogspot.com/_kLEwhjORzt8/SoWVFn7VTrI/AAAAAAAAAC0/8KW6v4a2T9g/s1600-h/fogra2.jpg
http://3.bp.blogspot.com/_kLEwhjORzt8/SoWVbctudtI/AAAAAAAAAC8/brjxj0tieqM/s1600-h/fogra3.jpg

Linear spaces

Linear spaces

Linear spaces are those that are operating in linear XYZ gamma space. You should NEVER
user linear gamma spaces to store your 8-bit images. Why? Because in 8 bits you have 256
levels, and in linear gamma the separation between those levels is not perceptually uniform.
That means you have very few levels to encode the effective dynamic range of your image
and many levels are wasted in highlights. Hold on, you would say, RAW images are encoded
in linear gamma and they work quite well, isn’t it? You are right... but | said 8 bits, remember?
If you move to 16 bits or floating point, you can still use linear encoding, but with some care.

When you use lcms to create a color transform joining two or more profiles, you are creating
a devicelink profile. You don'’t see it as a file; it lives in memory, and is destroyed when you
delete the transform. But it is there. Devicelinks can be implemented in different ways, for
example they can be implemented as a set of curves, or by a matrix, or by a 3D CLUT table,
or by a combination of all elements above. Some of those ways are better than others in
terms of xput, others are better in terms of image quality. CMMs have to “guess” which is
the best combination of elements for a given set of profiles. There is balance between quality
and performance. For some corner cases, optimizing for speed can effectively introduce
defects on quality.

An optimization method used by Icms when the transform converts from 16 bits to 16 bits,
is a CLUT table. This is just a 3D (or 4D in CMYK) grid with nodes. Pixel values are
interpolated across nodes. For example, the distortion you get when going from sRGB to
Adobe RGB is stored in a 3D grid of 17 nodes on each R, G, B side. When a pixel arrives,
the corresponding nodes that enclose the value are selected and the result is interpolated.
In our 17 nodes example, a value of, say, (100, 100, 100) will go on the 100*(17-1)/255 =
6.7 so the nodes 6 and 7 of each side will be taken for interpolation.

Let’s now take a linear space. Since as said, many colors are collapsed to a relatively few
codes due to the gamma encoding, almost all dynamic range is confined to few nodes. That
means, In a 17 nodes grid, most image dynamic range will fall in 5 or 6 nodes. And this is
the reason you got posterization in shadows: most of dark tones falls in just 1-2 nodes and
linear interpolation cannot deal with the non-linear nature of the transform linear-gamma 2.2.

How to solve this? The most evident way is to not use 3D CLUT optimization. The CMM
already does that if you use floating point. Placing a cmsFLAGS_NOOPTIMIZE in all
transforms would prevent problems, but at big performance penalty that is hard to explain
just to fix this specific case. In 2.13 there is some code to detect optimization used on linear
spaces.

My recommendation for programmers would be to allow end user to turn optimization off for
general usage, or at least to provide a specialized workflow for RAW handling with
optimizations turned off, that is the only place when linear XYZ makes sense. For users, |
would recommend to NEVER use linear XYZ spaces. They are good for nothing, nor for
storage, nor for image processing. The very few algorithms that need to be done in linear
can do and undo the conversion when processing. But anyway, there are people with strong
opinions on this field and everybody is free to do whatever they want. This is just a
recommendation; please don’t take it as a stone-engraved truth.

Error Logging

Error Logging

Error handling has changed drastically with Little CMS2. This is mostly because most
operations that can fail, can also report the status. So, in Little CMS2, there are no longer
error handlers. When a function fails, it just return the failure status. For example, if a color
transform cannot be created, the function returns NULL instead of a valid handle.

So, you have to check the return of the function for error handling. This approach is more
robust and can deal with multithreaded environments. Also, the memory management is
easier in this way and a failing function should not leak any resources. With Little CMS2,
leaked resurces are bugs, which was not so clear on 1.x series.

For debugging purposes, it may be handy to know what is making that function to fail. And
here goes the error logging. Some Little CMS functions does have a error logging facility.
When they are going to fail, they call a user-defined hook. This hook does recive an ASCII
text in english with some clues about the error. This is the error logging callback, and you
can set it up by calling following function:

void cmsSetLogErrorHandler(cmsLogErrorHandlerFunction Fn);

To be accepted by this function, your hook should be defined as this example:

void MyLogErrorHandler(cmsContext ContextID,
cmsUInt32Number ErrorCode, const char *Text)
{

}

printf(“%s\n”, Text);

If you take a look on the parameters, you will see a context identifier, an error code and the
descriptive text. The context id is giving the environment. That is the same pointer you
passed to the low level or THR function. In this way you can share same hook for different
threads, for example. Please note in some special situations ContextID can be NULL.

The numeric code gives some clue on the nature of the message. Can be used to give some
sort of information to end user, but it does not fully describe the nature of error. Think on it
as families of errors.

Again, the error logging is a debug feature. It should NOT be used to notify end user about
errors. Unless you want to confuse the end user with arcane messages, it is better to just
say “the profile cannot be open” instead of a criptic “corrupted MPE in DToA2 tag”. On the
other side, this message can be of great aid for developers to locate why this particular
profile is failing.

Table of numeric Error Codes

cmsERROR_UNDEFINED
cmsERROR_FILE
cmsERROR_RANGE
cmsERROR_INTERNAL
cmsERROR_NULL
cmsERROR_READ
cmsERROR_SEEK
cmsERROR_WRITE
cmsERROR_UNKNOWN_EXTENSION
cmsERROR_COLORSPACE_CHECK
cmsERROR_ALREADY_DEFINED 10
cmsERROR_BAD_SIGNATURE 11
cmsERROR_CORRUPTION_DETECTED | 12
cmsERROR_NOT_SUITABLE 13

OO (N[O |WIN—~|O

Notes:

It is important to note a single function call may trigger more than a single error logging entry.
In our anterior sample, opening a profile with corrupted data would trigger an event for
corrupted profile and another for invalid tag.

The logging function should NOT terminate the program, as this obviously can leave unfreed
resources. It is the programmer's responsability to check each function return code to make
sure it didn't fail.

Getting information from profiles

Getting information from profiles
Textual information

In versions prior to 4.0, the ICC format defined a required tag 'desc' which stored ASCII,
Unicode, and Script Code versions of the profile description for display purposes. However,
this structure allowed the profile to be localized for one language only through Unicode or
Script Code. Profile vendors had to ship many localized versions to different countries. It
also created problems when a document with localized profiles embedded in it was shipped
to a system using a different language. With the adoption of V4 spec as basis, Little CMS
solves all those issues honoring a new tag type: ‘mluc’ and multi localized Unicode. There
is a full part of the API to deal with this stuff, but if you don’t care about the details and all
you want is to display the right string, Little CMS provides a simplified interface for that
purpose.

There are four kinds of textual information you may want to retrieve:

typedef enum {
cmslinfoDescription =0,
cmslinfoManufacturer = 1,
cmsinfoModel =2,
cmsinfoCopyright =3

} cmsinfoType;

And here you have two functions to get the requiered information, either in UNICODE.
UTF8 or in plain ASCII.

cmsUInt32Number cmsGetProfileInfo(cmsHPROFILE hProfile, cmsinfoType Info,
const char LanguageCode|[3],
const char CountryCode[3],
wchar_t* Buffer,
cmsUInt32Number BufferSize);

cmsUInt32Number cmsGetProfileInfoASCll(cmsHPROFILE hProfile,
cmsinfoType Info,
const char LanguageCode[3],
const char CountryCode[3],
char* Buffer,
cmsUInt32Number BufferSize);

cmsUInt32Number cmsGetProfileInfoUTF8(cmsHPROFILE hProfile,
cmsinfoType Info,
const char LanguageCode[3],
const char CountryCode[3],
char* Buffer,
cmsUInt32Number BufferSize);

Getting information from profiles

Note that ASCII is strictly 7 bits, so you need to use wide chars or UTF8 if you want to
preserve the information in the profile. The localization trick is done by using the lenguage
and country codes, which you are supposed to supply. Those are two or three ASCI| letters.
Language and country codes are a lot, you can get the full list here:

Language Code: first name language code from ISO-639/2.
http://lcweb.loc.gov/standards/iso639-2/iso639jac.html
Country Code: first name region code from ISO-3166.

http.//www.iso.ch/iso/en/prods-services/iso3166ma/index.html

In practice, “en” for “english” and “US” for “united states” are implemented in most
profiles. It is Ok to set a language and a country even if the profile does not implement
such specific language and country. Little CMS will search for a proper match.

If you don’t care and want just to take the first string in the profile, you can use:

cmsNoLanguage |

For the language and

cmsNoCountry |

For the country

This will force to get the very first string, without any searching. A note of warning on that:
you will get an string, but the language would be any, and probably that is not what you
want. It is better to specify a default for language, and let Little CMS to choose any other
country (or language!) if what you ask for is not available.

Reading the unicode variant on V2 profiles

Since 2.16, a special setting for the lenguage and country allows to access the unicode
variant on V2 profiles.

For the language and country:

cmsV2Unicode |

Many V2 profiles have this field empty or filled with bogus values. Previous versions of Little
CMS were ignoring it, but with this additional setting, correct V2 profiles with two variants
can be honored now. By default, the ASCII variant is returned on V2 profiles unless you
specify this special setting. If you decide to use it, check the result for empty strings and if
this is the case, repeat reading by using the normal path.

Getting information from profiles

Profile header fields

These are the functions to access all members of ICC profile header. There are counter-
parts to set the header members on profile creation. See the API reference for more
details.

cmsUInt32Number cmsGetHeaderFlags(cmsHPROFILE hProfile);

void cmsGetHeaderAttributes(cmsUInt64Number* Flags, cmsHPROFILE hProfile);
void cmsGetHeaderProfileID(cmsHPROFILE hProfile, cmsUInt8Number* ProfilelD);

cmsBool cmsGetHeaderCreationDateTime(struct tm *Dest, cmsHPROFILE hProfile);
cmsUInt32Number cmsGetHeaderRenderinglntent(cmsHPROFILE hProfile);
cmsUInt32Number cmsGetHeaderCreator(cmsHPROFILE hProfile);

cmsUInt32Number cmsGetHeaderManufacturer(cmsHPROFILE hProfile);
cmsUInt32Number cmsGetHeaderModel(cmsHPROFILE hProfile);

cmsColorSpaceSignature cmsGetPCS(cmsHPROFILE hProfile);
cmsColorSpaceSignature cmsGetColorSpace(cmsHPROFILE hProfile);
cmsProfileClassSignature cmsGetDeviceClass(cmsHPROFILE hProfile);

cmsFloat64Number cmsGetProfileVersion(cmsHPROFILE hProfile);
cmsUInt32Number cmsGetEncodedICCversion(cmsHPROFILE hProfile);

Getting information from profiles

Profile Directory

You can iterate across the profile directory to list all available tags. There is a function to
check if a given tag is present on directory. There is a limit of 100 different tags per
profile. Not to be a problem, since actual ICC spec defines less than that number.

cmsInt32Number cmsGetTagCount(cmsHPROFILE hProfile);
cmsTagSignature cmsGetTagSignature(cmsHPROFILE hProfile, cmsUInt32Number n);
cmsBool cmslsTag(cmsHPROFILE hProfile, cmsTagSignature sig);

Profile capabilities

Some special functions can check the profile internal implementation:

#define LCMS_USED_AS_INPUT 0
#define LCMS_USED_AS_OUTPUT 1
#define LCMS_USED_AS_PROOF 2

cmsBool cmslsIntentSupported(cmsHPROFILE hProfile,
cmsUInt32Number Intent,
int UsedDirection);

cmsBool cmslsMatrixShaper(cmsHPROFILE hProfile);
cmsBool cmslsCLUT(cmsHPROFILE hProfile,

cmsUInt32Number Intent,
int UsedDirection);

This one helps on inquiring if a determinate intent is supported by an opened profile. You
must give a handle to profile, the intent and a third parameter specifying how the profile
would be used. The function does return TRUE if intent is supported or FALSE if not. If the
intent is not supported, Little CMS will use default intent (usually perceptual).

Getting information from profiles

Reading tags

The low level interface for reading tags is as simple as a single function. In Little CMS you
can read a tag from an open profile by doing:

Tag = cmsReadTag(hProfile, TagSignature);

Little CMS will return (if found) a pointer to a structure holding the tag. Simple, but not simpler
as the structure is not the contents of the tag, but the result of parsing the tag. For example,
reading a cmsSigAToBO tag results as a Pipeline structure ready to be used by all the
cmsPipeline functions. The memory belongs to the profile and is set free on closing the
profile. In this way there are no memory duplicates and you can safely re-use the same tag
as many times as you wish. Writing tags is almost the same, you just specify a pointer to the
structure and the tag name and Little CMS will do all serialization for you. Process under the
hood may be very complex, if you realize v2 and v4 of the ICC spec are using different
representations of same structures.

Anyway, you may decide all that is useless and you want just to write/read bytes to the
profile, in this case the raw variants are for you.

cmsInt32Number cmsReadRawTag(cmsHPROFILE hProfile,
cmsTagSignature sig,
void* Buffer, cmsUInt32Number BufferSize);

That's alike, but different in two important aspects. 1%, the memory is not owned by the
profile, but by you, so you have to allocate the neccesary amount of memory to hold entire
tag. To know the needed size, just pass NULL as buffer and 0 as buffer size. The function
will return the number of needed bytes.

The second important point is, this is raw data. No processing is performed, so you can
effectively read wrong or broken profiles with this function. Obviously, then you have to
interpret all those bytes!

IMPORTANT NOTE: There is a direct relationship “tag type” >
“Little CMS type”. On the API reference, there is a table listing all
tag types and the Little CMS type used to read/write.

Creating new profiles

Writing tags

Writing tags is almost the same. You just provide a pointer to the structure and the tag name.
Little CMS does all serialization.

cmsBool cmsWriteTag(cmsHPROFILE hProfile,
cmsTagSignature sig, const void* data);

Function returns TRUE on success, FALSE on error.

cmsBool cmsWriteRawTag(cmsHPROFILE hProfile, cmsTagSignature sig,
const void* data, cmsUInt32Number Size);

The RAW version does the same but without any interpretation of the data. Please note it is
fair easy to deal with “cooked” structures, since there are primitives for allocating, deleting
and modifying data. For RAW data you are responsible of everything. If you want to deal
with a private tag, you may want to write a plug-in instead of messing up with raw data.

The linked tag feature

Some profile creators may want to reuse the same values for several different tags. To do
that you may want to use the linked tag feature.

cmsBool cmsLinkTag(cmsHPROFILE hProfile,
cmsTagSignature sig, cmsTagSignature dest);

After this call, a new tag of signature ‘sig’ is created. The entry, however, points to the same
location as tag ‘dest’.

Creating new profiles

Use this function to create an empty profile, ready to be populated.

cmsHPROFILE cmsCreateProfilePlaceholder(cmsContext ContextID);

In addition, when you open a profile with 'w' as access mode, you got a simpler Lab identity.
That is, a profile marked as Lab colorspace that passes input untouched to output. You can
use that as a basis of new profiles, by setting colorspace, device class, PCS and then add
the required tags.

Tone curves

Tone curves

Tone curves are a powerful tool to model 1D transformations. Little CMS provides several
primitives to create, group and apply such tool. Tone Curves in the engine can be bounded
and unbounded, specified as math expressions or by means of tables. Tone Curve primitives
does support:

e Tabulated curves
e Parametric curves
e Segmented curves

Tabulated curves were introduced as curveType in ICC version 2. In Version 4 of the ICC
Profile Specification, parametricCurveType was introduced as an alternative to curveType
for the representation of one-dimensional transfer functions. Either type can be used for the
TRC tags or for the A-curves, B-curves, and M-curves embedded in /utAtoBType or
lutBtoAType tags. In contrast to the older curveType, the new V. 4 type defines curves by
closed-form expressions, rather than by 1D Look-Up Tables. Each curve is a scalar function
of a scalar variable, but the expressions also involve constants, or parameters, which are
encoded in the corresponding profile tags.

The V4 Profile specification supports five different Function Types, requiring between 1 and
7 parameters. The Specification places no restrictions on the values of these parameters,
aside from those imposed by the format. According to Clause 10.15, the parameters are
encoded in the s15Fixed16Number format. Thus, the values can range from —32768 to
almost +32768 (actually 32768 — 1/65536) in steps of 1/65536, or 0.0000152587890625.
These restrictions are quite mild and, in practice, are hardly noticeable.

In Types 1, 2, 3, and 4, the domain is divided into two segments, and the power law is
employed only in the higher segment. For instance, the definition of Type 1 is:
y=h(x)=0, 0<x<-b/a
=sY —b/a<x<1

In normal usage, a will be positive and b will be negative, so that the segment boundary, —
b/a, occurs at a positive value of x. The function is identically zero in the lower segment

Type 2 curves have a similar structure, with a segment boundary at x = —b/a, so the same
analysis applies. However, in Types 3 and 4, the segment boundary is defined by an
independent parameter, d. In the absence of restrictions, it is quite possible for d to be less

Tone curves

than —b/a. There can then be values of x in the higher segment (x > d) at which s=ax + b
will be negative.

Types 3 and 4 do not enjoy a similar guarantee. Here is the definition of Type 3:

y = f3(x) = cx, O0sx<d

=g, d<x<1

Type 4 is defined as follows:

y = fa(x) = cx + f, 0<sx<d

=s'+e, d<x<1

Where e and f are additional parameters. See the API reference for more details on
supported parametric curves.

Recently, the multiProcessElementsType introduced new curve types to the ICC
specification, including formula curves (defined similarly to the parametricCurveType) and
sampled curve segments. The issues of imaginary numbers, continuity, and smoothness
discussed above also apply to MPE segmented curves. However, continuity and
smoothness may have different considerations since MPE curves are unbounded and
segmented curves are most likely be used to perform the clipping that is required to set up
inputs to following CLUT elements.

You can add new types of parametric curves by using the tone curve plug-in, but you have
to be carefull on that, since the obtained profiles will not be compliant with the ICC spec.
See the Plug_in API for more details.

Pipelines and Multi Processing elements

Pipelines and Multi Processing elements

Previously, all internal handling of profiles was done by using several, unrelated structures.
We had a LUT, a Matrix Shaper and then customized adjustments hardcoded in certain
places. That was not a very good idea in terms of flexibility and maintainability, so in version
2, | joined all that together in a more general and flexible concept: the pipelines.

That is just what the name suggests. A pipeline is a construct that has several steps, the
stages, which are evaluated in order. You can feed some values to the pipeline and then get
the results after the evaluation. Moreover, pipelines can be optimized for performance. If a
given pipeline contains, for example, only matrices, a suitable optimization would be to
multiply all matrices and therefore simplify several steps in a single matrix.

All processing in Little CMS is performed by means of pipelines. And this has been a
valuable tool in order to implement new things, like multi-processing elements type. What is
that? Let’s see the full story...

In November 2006 the ICC approved the multiProcessingElements Tag type as part of the
Floating Point Encoding Range addendum to the ICC profile Specification. This new tag
type’s primary purposes were to overcome limited precision in ICC profiles by allowing for
the direct encoding of floating point data in an ICC profile, remove bounding restrictions for
both device side and PCS encoding ranges, and provide for backwards compatibility to the
existing ICC profile specification.

Eight new tags that use this new Tag type are defined to allow for the optional substitution
of the tags that define rendering intents in an ICC profile. D2Bx/B2Dx tags can now exist
in a profile in addition to A2Bx/B2Ax tags. A CMM can now optionally first look for
D2Bx/B2Dx tags and use them instead of the A2Bx/B2Ax tags or Matrix/TRC tags. Explicit
definition of the absolute rendering intent is also now possible through the use of D2B3 and
B2D3 tags.

The eight new tags are optional which means that existing Color Management systems can
ignore them as private tags. This allows for profiles to be built and embedded in images, or
otherwise used in workflows that do not support the use of these new tags without breaking
those workflows. It is hoped that the use and adoption of these tags will be made easier
because their presence shouldn’t break existing workflows.

The D2Bx/B2Dx tags all make use of the new multiProcessingElements tag type. Important
aspects of this tag type include:

e This tag type provides for an arbitrary sequence of processing elements to perform
the device to PCS or PCS to device conversion. Processing elements can be
thought of as transformation steps that convert input channel data to output channel
data.

Pipelines and Multi Processing elements

e All the processing elements encode data using 32-bit IEEE 754 floating-point
encoding.

e The absolute rendering intent can be encoded with D2B3/B2D3 tags.

e The initial repertoire of processing elements includes N-dimensional lookup tables,
NxM matrices, sets of one dimensional segmented curves, and two future expansion
elements.

e The PCS for D2Bx/B2Dx tags is the floating point equivalent of the PCS in
A2Bx/B2Ax tags. When D2Bx tags are connected to B2Dx tags no clipping is
performed in the PCS.

e D2Bx tags can be connected to B2Ax or Matrix/TRC based tags with appropriate
clipping of the PCS values as needed, and A2Bx or Matrix/TRC based tags can be
connected to B2Dx tags.

e The CMM performs NO manipulation of data between processing elements. The
CMM simply passes the results from one processing element to the next processing
element.

e Generally, up to 65535 channels of floating point data can be passed between
processing elements.

e Processing element types are not required to support the upper limit of 65535 input
and 65535 output channels.

o The channel usage of the first and last elements in a D2Bx/B2Dx tag must agree
with the channel usage requirements of both the containing D2Bx/B2Dx tag and the
profile header. (Note: Currently the color fields of the profile header limit the
maximum number of channels to 15).

The fall back behavior of using A2Bx/B2Ax tags is prescribed if processing elements are
encountered that are unknown to the CMM. This allows for a graceful handling for future
expansion of the processing element repertoire.

The device encoding range for D2Bx and B2Dx tags is unbounded, but conversions and
clipping may need to be made to be compatible with A2Bx and B2Ax tags. The equivalent
device encoding range of A2Bx and B2Ax tags is converted to the range of 0.0 to 1.0 when
applying D2Bx and B2Dx tags.

The initial repertoire of processing element includes N-dimensional lookup tables, NxM
matrices, and sets of one dimensional segmented curves. These all use 32-bit IEEE 754
floating-point encoding for processing and data storage purposes. An arbitrary number of
these elements can be combined in any order to accomplish the purpose of defining a
transform. Output channels from preceding elements are direct inputs to succeeding
elements.

Pipelines and Multi Processing elements

CLUT element

The CLUT element is used to store N-dimensional lookup tables. They can accept up to 15
input channels (constrained by the allowed ‘Number of grid points in each dimension’ in the
CLUT element encoding) and output up to 65535 channels. The CLUT input range is from
0.0 to 1.0 since using grid points represents the sampled range, and clipping is prescribed
for values outside this range. Scaling/conversion may need to be performed by a processing
element before a CLUT element to get values into the range from 0.0 to 1.0. The output
range of a CLUT element is the entire floating-point encoding range.

Matrix element

The matrix element can be used to store an NxM matrix with a constant offset vector. The
input and output dimensions need not be the same, and up to 65535 channels can be used
for both input and output. The input and output range is the entire floating-point encoding
range.

Curve set element

The curve set element encodes multiple one dimensional curves. Up to 65535 separate
curves can be defined. The curves are segmented to allow the entire floating-point encoding
range to be used as both input and output. Up to 65535 segments are possible for each
curve with positions and definitions of each segment definable. Each segment can be
defined as a formula or sampled curve segment. Formula segments define a function type
and provide parameters to the function. Sampled segments are equally spaced sample
points defining a 1 dimensional look up table.

Additions and the processing element plug-in

Possible additions to the processing element repertoire are also under consideration within
the ICC. Two future expansion element types were included for expansion purposes. These
elements encode a single signature value and have no prescribed operations. They simply
pass the channel data to the next processing element.

Helper functions

Helper functions

Here are some functions that may be useful.

cmsUInt32Number cmsChannelsOf(cmsColorSpaceSignature ColorSpace);

Colorimetric space conversions

void cmsXYZ2xyY(cmsCIExyY™* Dest, const cmsCIEXYZ* Source);

void cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source);

void cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint, cmsCIELab* Lab, const cmsCIEXYZ* xyz);
void cmsLab2XYZ(const cmsCIEXYZ* WhitePoint, cmsCIEXYZ* xyz, const cmsCIELab* Lab);
void cmsLab2LCh(cmsCIELCh*LCh, const cmsCIELab* Lab);

void cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh);

Converting encoded values

void cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wlLabl[3]);
void cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wlLab[3]);
void cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* Lab);
void cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3], const cmsCIELab* Lab);
void cmsXYZEncoded2Float(cmsCIEXYZ* fxyz, const cmsUInt16Number XYZ[3]);
void cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ);

Linear Bradford Chromatic Adaptation

Linear Bradford Chromatic Adaptation

In color science, chromatic adaptation is the estimation of the representation of an object
under a different light source than the one in which it was recorded. A common application
is to find a chromatic adaptation transform (CAT) that will make the recording of a neutral
object appear neutral while keeping other colors also looking realistic. This function
implements the so called Bradford chromatic adaptation, but simplified in the blue zone to
be linear and reversible. You can get CAT02 as well by using CAM02 appearance model.

cmsBool cmsAdaptTollluminant(cmsCIEXYZ* Result,
const cmsCIEXYZ* SourceWhitePt,
const cmsCIEXYZ* llluminant,
const cmsCIEXYZ* Value);

Color difference functions

Color difference functions

You don't have to spend too long in the color management world before you come across
the term Delta-E. As with many things color, it seems simple to understand at first, yet the
closer you look, the more elusive it gets.

Delta-E (dE) is a single number that represents the 'distance' between two colors.

The idea is that a dE of 1.0 is the smallest color difference the human eye can see. So any
dE less than 1.0 is imperceptible and it stands to reason that any dE greater than 1.0 is
noticeable. Unfortunately it's not that simple. Some color differences greater than 1 are
perfectly acceptable, maybe even unnoticeable. Also, the same dE color difference between
two yellows and two blues may not look like the same difference to the eye and there are
other places where it can fall down.

It's perfectly understandable that we would want to have a system to show errors. After all,
we've spent the money on the instruments; shouldn't we get numbers from them? Delta-E
numbers can be used for:

¢ how far off is a print or proof from the original

e how much has a device drifted

¢ how effective is a particular profile for printing or proofing
e removes subjectivity (as much as possible)

Delta-E metrics

These functions does compute the difference between two Lab colors, using several
difference spaces

cmsFloat64Number cmsDeltaE(const cmsCIELab* Lab1,
const cmsCIELab* Lab2);

The L*a*b* color space was devised in 1976 and, at the same time delta-E 1976 (dE76)
came into being. If you can imagine attaching a string to a color pointin 3D Lab space, dE76
describes the sphere that is described by all the possible directions you could pull the string.
If you hear people speak of just plain 'delta-E' they are probably referring to dE76. It is also
known as dE-Lab and dE-ab. One problem with dE76 is that Lab itself is not 'perceptually
uniform' as its creators had intended. So different amounts of visual color shift in different
color areas of Lab might have the same dE76 number. Conversely, the same amount of
color shift might result in different dE76 values. Another issue is that the eye is most sensitive
to hue differences, then chroma and finally lightness and dE76 does not take this into
account.

Color difference functions

cmsFloat64Number cmsCMCdeltaE(const cmsCIELab* Lab1,
const cmsCIELab* Lab2,
cmsFloat64Number |, cmsFloat64Number c);

cmsFloat64Number cmsBFDdeltaE(const cmsCIELab* Lab1,
const cmsCIELab* Lab2);

In 1984 the CMC (Colour Measurement Committee of the Society of Dyes and Colourists of
Great Britain) developed and adopted an equation based on LCH numbers. Intended for the
textiles industry, CMC I:.c allows the setting of lightness (I) and chroma (c) factors. As the
eye is more sensitive to chroma, the default ratio for I:c is 2:1 allowing for 2x the difference
in lightness than chroma (numbers). There is also a 'commercial factor' (cf) which allows an
overall varying of the size of the tolerance region according to accuracy requirements. A
cf=1.0 means that a delta-E CMC value <1.0 is acceptable.

CMC l:c is designed to be used with D65 and the CIE Supplementary Observer. Commonly-
used values for I:c are 2:1 for acceptability and 1:1 for the threshold of imperceptibility.

cmsFloat64Number cmsCIE94DeltaE(const cmsCIELab* Lab1,
const cmsCIELab* Lab2);

A technical committee of the CIE (TC1-29) published an equation in 1995 called CIE94. The
equation is similar to CMC but the weighting functions are largely based on RIT/DuPont
tolerance data derived from automotive paint experiments where sample surfaces are
factor (cf) but these tend to be preset in software and are not often exposed for the user.
That is the case in Little CMS.

cmsFloat64Number cmsCIE2000DeltaE(const cmsCIELab* Lab1,
const cmsCIELab* Lab2,
cmsFloat64Number Ki,
cmsFloat64Number Kc,
cmsFloat64Number Kh);

Delta-E 2000 is the first major revision of the dE94 equation. Unlike dE94, which assumes
that L* correctly reflects the perceived differences in lightness, dE2000 varies the weighting
of L* depending on where in the lightness range the color falls. dE2000 is still under
consideration and does not seem to be widely supported in graphics arts applications.

PostScript generation

PostScript generation

The PostScript language does not support ICC technology. That is, it does not have
constructs which allows the specification of an ICC profile in a PostScript file. Instead, from
Level 2 (1989) on, PostScript contains its own color description system and from Level 3 (to
be precise, from Level 2 version 2016) on, it has its own color management system,
complete with profiles, rendering intents and CMM. This system, called PostScript Color
Management (PCM) operates only during printing, within a PostScript RIP.

When PostScript code is transferred to the rip for printing, in the printing stream the CSA,
containing the information for converting colors from the source space to the XYZ space, is
also inserted. Alternatively, an EPS with a built-in CSA can be saved.

A CRD that resides in the RIP contains the information to change the XYZ coordinates into
the ink percentages for that printer.

When the PostScript code with its CSA arrives at the rip, the PostScript interpreter (which
acts as a color engine) converts the source colors into XYZ and from XYZ to the colors of
the printer. This process is defined by the rip programmer using what PostScript calls "color
rendering procedures".

The selection of the suitable CRD is the task of the PostScript interpreter, which operates
as programmed. Many rips allow the selection of different CRDs according to print
resolution, type of paper and rendering intent.

If the PostScript printing stream or the EPS has no inserted CSA, the rip may use a default
CSA. If the rip has no resident CRD, or does not wish to use it, another may be downloaded,
by the operator or by the application itself.

These functions do translate input and output profiles into Color Space Arrays (CSA) and
Color Rendering Dictionaries (CRD)

Unified method to access postscript color resources

typedef enum { cmsPS_RESOURCE_CSA,
cmsPS_RESOURCE_CRD } cmsPSResourceType;

cmsUInt32Number cmsGetPostScriptColorResource(cmsContext ContextlD,
cmsPSResourceType Type,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags,
cmsIOHANDLER* io);

PostScript generation

Compatibility methods:

cmsUInt32Number cmsGetPostScriptCSA(cmsContext ContextID,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags,
void* Buffer,
cmsUInt32Number dwBufferLen);

cmsUInt32Number cmsGetPostScriptCRD(cmsContext ContextID,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags,
void* Buffer,
cmsUInt32Number dwBufferLen);

e CRD are equivalent to output (printer) profiles. Can be loaded into printer at startup
and can be stored as resources.

e (CSA are equivalent to input and workspace profiles, and are intended to be included
in the document definition.

These functions does generate the PostScript equivalents. Since the lenght of the resultant
PostScript code is unknown in advance, you can call the functions with len=0 and
Buffer=NULL to get the lenght. After that, you need to allocate enough memory to contain
the whole block

Example:

Size = cmsGetPostScriptCSA(hProfile, INTENT_PERCEPTUAL, NULL, 0);
if (Size == 0) error()

Block = malloc(Size);
cmsGetPostScriptCSA(hProfile, INTENT_PERCEPTUAL, Block, Size);

Devicelink profiles are supported, as long as input colorspace matches Lab/XYZ for CSA
or output colorspace matches Lab/XYZ for CRD. This can be used in conjuntion with
cmsCreateMultiprofileTransform(), and cmsTransform2DevicelLink() to embed complex
color flow into PostScript.

WARNING: Precision of PostScript is limited to 8 bits per sample. If
you can choose between normal transforms and CSA/CRD, normal
transforms will give more accurancy. However, there are situations
where there is no chance.

CIECAMO2

CIECAMO02

Published in 2002 by the CIE Technical Committee 8-01 (Color Appearance Modeling for
Color Management Systems), as of 2010 CIECAMO2 is the most recent color appearance
model ratified by the CIE, and the successor of CIECAM97s.

The model input data are the adapting field luminance in cd/m2 normally taken to be 20%
of the luminance of white in the adapting field), La , the relative tristimulus values of the
stimulus, XYZ, the relative tristimulus values of white in the same viewing conditions, "white
Point", and the relative luminance of the background, Yb . Relative tristimulus values should
be expressed on a scale from Y = 0 for a perfect black to Y = 100 for a perfect reflecting
diffuser.

All CIE tristimulus values are obtained using the CIE 1931 Standard Colorimetric Observer

(2°).

The inner circle is the stimulus, from which the Boekoratng
tristimulus values should be measured in CIE XYZ
using the 2° standard observer. The intermediate
circle is the proximal field, extending out another Bl eid
2°. The outer circle is the background, reaching out
to 10°, from which the relative luminance (Yb)
need be measured. If the proximal field is the same stimulus
color as the background, the background is
considered to be adjacent to the stimulus. Beyond
the circles which comprise the display field (display
area, viewing area) is the surround field (or
peripheral area), which can be considered to be
the entire room. The totality of the proximal field, background, and surround is called the
adapting field (the field of view that supports adaptation—extends to the limit of vision).

typedef struct {
cmsCIEXYZ whitePoint;
double Yb;
double La;
int surround;
double D_value;

} cmsViewingConditions;

Surround can be one of these:

http://en.wikipedia.org/w/index.php?title=Color_appearance_model&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Color_appearance_model&action=edit&redlink=1
http://en.wikipedia.org/wiki/International_Commission_on_Illumination
http://en.wikipedia.org/wiki/CIE_1931_color_space

CIECAMO2

#define AVG_SURROUND 1
#define DIM_SURROUND 2
#define DARK_SURROUND 3

D_value (adaptation degree) is any value between 0 and 1

The functions for dealing with CAMO02 appearance model are:

cmsHANDLE cmsCIECAMO2Init(cmsContext ContextID,
const cmsViewingConditions* pVC);

void cmsCIECAMO02Done(cmsHANDLE hModel);

void cmsCIECAMO2Forward(cmsHANDLE hModel,
const cmsCIEXYZ* pln, cmsJCh* pOut);

void cmsCIECAMO02Reverse(cmsHANDLE hModel,
const cmsJCh* pln, cmsCIEXYZ* pOut);

CIECAMO2

For example, to convert XYZ values from a given viewing condition to another:

o Create descriptions of both viewing conditions by using cmsCIECAMO2Init

e Convert XYZ to JCh using cmsCIECAMO2Forward for viewing condition 1

e Convert JCh back to XYZ using cmsCIECAMOZ2Reverse for viewing condition 2
e when done, free both descriptions

cmsViewingConditions vc1, vc2;
cmsJCh Out;

cmsCIEXYZ In;

cmsHANDLE h1, h2;

vec.whitePoint. X = 98.88;
ve.whitePoint.Y = 90.00;
vc.whitePoint.Z = 32.03;

ve.Yb = 18;

vc.La = 200;

vc.surround = AVG_SURROUND;
vc.D_value =1.0;

h1 = cmsCIECAMO2Init(0, &vc);

vc2.whitePoint.X = 98.88;
vc2.whitePoint.Y = 100.00;
vc2.whitePoint.Z = 32.03;

vc2.Yb = 20;

vc2.La = 20;

vc2.surround = AVG_SURROUND;
vc2.D_value = 1.0;

h2 = cmsCIECAMO2Init(0, &vc);
In.X= 19.31;
In.Y=23.93;
In.Z =10.14;

cmsCIECAMO2Forward(h1, &In, &Out);
cmsCIECAMO2Reverse(h2, &Out, &In);

cmsCIECAMO02Done(h1);
cmsCIECAMO02Done(h2);

See the CIECAMO2 paper on CIE site for further details.

CGATS parser

CGATS parser

Overview

This module intends to be an all-purpose parser for CGATS format. It allows reading,
decoding, writing and to some extent modifying CGATS files. It supports latest CGATS.17
like multi table extensions and some additional features not yet described in the spec.

Memory management

In order to simplify the task, a memory manager is integrated within the parser. In this way,
users of the module need NOT to free any memory but the parser at whole. That is, user
allocates a parser and obtains a handle to it. Then, several functions accessing this handle
may return pointers to memory blocks. Those memory chunks are maintained by the parser,
and may be dereferenced in the lifetime of the parser. As soon as the user frees the parser
by using cmslIT8Free, all memory chunks are automatically freed. This methodology has
proven to be both simple and effective to deal with the complexities of associated memory.

Additions

Several additions to CGATS.17 are provided in this parser. Those are not part of the CGATS
standard, but at the design time, we thought them would be very useful.

INCLUDE “url_or_filename”
$INCLUDE “url_or_filename”

Works like #include in C language. That is, the directive will be replaced on parsing time
with the contents of the file or URL referenced. Files may be nested.

0x Ob Hexadecimal and binary constants

Any numeric constant prefixed by “0Ox” will be understood as a hexadecimal constant. Also
any numeric constant prefixed by “Ob” will be understood as a binary number.

CGATS parser

Examples:

PROPERTY 12 # That's ok

PROPERTY A PROPERTY # That's ok too

PROPERTY “A PROPERTY” # That’s ok, and contains whitespaces
PROPERTY A PROPERTY # Wrong!

COEFFICIENT_A “1.2345”
HEX_VALUE “0x1234”
WITH_EXPONENT “1.2E4”

Strict CGATS

CGATS requires KEYWORD if the identifier is not in the predefined list. However, for
simplicity sake, | would relax this requeriment. There is a special compilation toggle to turn
off this feature.

CMS_STRICT_CGATS |

Gamut boundary description

Gamut boundary description

The determination of gamut boundaries is a task that can be carried out for a number of
motives. It can be done simply for the purpose of understanding what range of colors is
present in a given image. It can be done to see what range of colors is achievable on a given
color reproduction medium. It can also be done to see what color gamut is predicted by a
characterization model and, hence, to see how well that model is suited for the calculation
of gamut boundaries.

Little CMS implements Jan Morovic’s
“Segment Maxima” algorithm.

Using this method, the gamut boundary
of a color reproduction medium (or an
image from it) is described by a table
containing the most extreme colors for
each segment of color space. This
segmentation can be carried out either in
terms of L*, C*, and ha, or spherical
coordinates whereby spherical
coordinates can be calculated from
(a) (b) orthogonal CIELAB coordinates.

A gamut boundary descriptor can be created, accessed and freed across following functions.

cmsHANDLE cmsGBDAlloc(cmsContext ContextID);

void cmsGBDFree(cmsHANDLE hGBD);

cmsBool cmsGDBAddPoint(cmsHANDLE hGBD, const cmsCIELab* Lab);
cmsBool cmsGDBCompute(cmsHANDLE hGDB, cmsUInt32Number dwFlags);
int cmsGDBCheckPoint(cmsHANDLE hGBD, const cmsCIELab* Lab);

You first allocate an empty GBD by using the cmsGBDAlloc function, then add all known
points with cmsGDBAddPoint and then interpolate missing sectors by calling the
cmsGDBCompute function. After that you can check points to be on gamut by using
cmsGDBCheckPoint function. GBD internal structure is hidden across a generic handle.
Flags are not currently used.

Gamut boundary description

For more info on that, you can find a detailed description of the algorithm in

“Calculating medium and image gamut boundaries for gamut mapping”

Jan Morovit *, M. Ronnier Luo

Colour & Imaging Institute, Kingsway House, Kingsway, Derby DE22 3HL, United
Kingdom

Conclusion

Conclusion

That's almost all you must know to begin experimenting with profiles, just a couple of words
about the possibilities ICC profiles can give to programmers. ColorSpace profiles are
valuable tools for converting from/to exotic file formats. I'm using Little CMS to read Lab
TIFF using the popular Sam Leffler's TIFFLib. Also, the ability to deal with CMYK
separations are much better that the infamous 1-CMY method. Abstract profiles can be used
to manipulate color of images, contrast, brightness and true-gray reductions can be done
fast and accurately. Grayscale conversions can be done exceptionally well, and even in
tweaked colorspaces that does emulate more gray levels that the output device can
effectively render.

Little CMS does all calculation on floating point basis, you can take advantage of that
precision for HDR images. Some formats (TIFF for example) do support this. Photoshop as
well. That can be used to efficiently emulate more than 8 bits per sample. You probably will
not notice this effect on screen, but it can be seen on printed or film media.

There is a huge quantity of profiles moving around the net, and there is very good
software for generating them, so future compatibility seems to be assured.

| thank you for your time and consideration.

Enjoy!

Sample 1: How to convert RGB to CMYK

Conclusion

This is easy. Just use a transform between RGB profile to CMYK profile.

#include "lcms2.h"

int main(void)

{

cmsHPROFILE hinProfile, hOutProfile;
cmsHTRANSFORM hTransform;
int i

hinProfile = cmsOpenProfileFromFile("sRGBColorSpace.ICM", "r");
hOutProfile = cmsOpenProfileFromFile("MyCmyk.ICM", "r");

hTransform = cmsCreateTransform(hInProfile,
TYPE_RGB_38,
hOutProfile,
TYPE_CMYK 8,
INTENT_PERCEPTUAL, 0);

cmsCloseProfile(hInProfile);
cmsCloseProfile(hOutProfile);

for (i=0; i < AllScanlinesTilesOrWatseverBlocksYouUse; i++)

{

cmsDoTransform(hTransform, YourlnputBuffer,
YourOutputBuffer,
YourBuffersSizelnPixels);

cmsDeleteTransform(hTransform);

return O;

Sample 2: How to convert from CMYK to RGB.

Conclusion

Just exchange profiles and format descriptors:

#include "lcms2.h"

int main(void)

{

cmsHPROFILE hinProfile, hOutProfile;
cmsHTRANSFORM hTransform;
int i;

hinProfile = cmsOpenProfileFromFile("MyCmyk.icc", "r");
hOutProfile = cmsOpenProfileFromFile("sRGBColorSpace.icc", "r");

hTransform = cmsCreateTransform(hInProfile,
TYPE_CMYK 8,
hOutProfile,
TYPE_RGB_38,
INTENT_PERCEPTUAL, 0);

cmsCloseProfile(hInProfile);
cmsCloseProfile(hOutProfile);

for (i=0; i < AllScanlinesTilesOrWatseverBlocksYouUse; i++)

{

cmsDoTransform(hTransform, YourlnputBuffer,
YourOutputBuffer,
YourBuffersSizelnPixels);

cmsDeleteTransform(hTransform);

return O;

Sample 3: How to deal with Lab/XYZ spaces

Conclusion [N

This is more elaborated. There is a Lab identity Built-In profile involved.

#include "lcms2.h"
/I Converts Lab(D50) to sRGB:

int main(void)

{

cmsHPROFILE hinProfile, hOutProfile;
cmsHTRANSFORM hTransform;

int i;

cmsUInt8Number RGB[3];

cmsCIELab Lab;

hinProfile = cmsCreatelLab4Profile(NULL);
hOutProfile = cmsOpenProfileFromFile("sRGBColorSpace.icc", "r");

hTransform = cmsCreateTransform(hInProfile,
TYPE_Lab_DBL,
hOutProfile,
TYPE_RGB_8,
INTENT PERCEPTUAL, 0);

cmsCloseProfile(hInProfile);
cmsCloseProfile(hOutProfile);

for (i=0; i < AllLabValuesToConvert; i++)
{
/[Fill in the Float Lab
Lab.L = Your L;
Lab.a = Your a;
Lab.b = Your b;
cmsDoTransform(hTransform, &Lab, RGB, 1);

.. Do whatsever with the RGB values in RGBJ[3]

cmsDeleteTransform(hTransform);

return O;

